
nature biotechnology Volume 42 | February 2024 | 196–199 | 196

https://doi.org/10.1038/s41587-023-02115-w

Primer

Generative models for protein structures
and sequences

Chloe Hsu, Clara Fannjiang & Jennifer Listgarten

Models like ChatGPT and DALL-E2 generate
text and images in response to a text prompt.
Despite different data and goals, how can
generative models be useful for protein
engineering?

Natural evolution creates new proteins through stochastic processes
such as mutation and recombination, coupled with the screening
filter of organismal fitness. In the past few decades, proteins have been
engineered with directed evolution, which roughly mimics natural
evolution, only doing so with a user-specified filter to select desired
properties. Directed evolution typically starts from a known protein
and explores only similar sequences, typically by using stochastic labo-
ratory methods for sequence modification. Diversification, naturally
occurring or otherwise, can be thought of as a generative mechanism
for protein sequence candidates. With recent advances in machine
learning, along with advances in modern-day sequence synthesis, it
is becoming feasible to use more complex generative mechanisms
to explore much broader swaths of protein spaces more efficiently.
A wide variety of machine learning modeling strategies can be use-
ful for different problems involving proteins. Herein we focus on
generative models—those that can generate protein sequences
and/or structures—and particularly on conditional generative models
that generate sequences and/or structures that are consistent with a
specified property such as a protein family1, an active-site structure
(called functional site scaffolding)2–6 or a specified backbone structure
(called inverse folding)7–10.

Although conditional generative models for protein sequences
and structures are relatively new, they are closely related to uncon-
ditional generative models, such as profile hidden Markov models
(HMMs) and Potts models. An unconditional generative model learns
a probability distribution, pθ(X), where the values in θ are the learned
parameters of the generative model. Implicitly, the model represents
a distribution for just one condition. For example, a Potts model for
one protein family learns the distribution of amino acid sequences,
X, of proteins in that family. When there are sufficiently many evolution-
arily related homologs for the protein of interest, such unconditional
generative models can be a simple, fruitful strategy for generating
diverse protein sequences.

In contrast to their unconditional counterparts, conditional
generative models learn not only one probability distribution for
one condition, but rather, a collection of many probability distribu-
tions, one for each of many conditions. In principle, the condition
in a conditional generative model can be any property, specified
as a one-dimensional scalar, a vector, a matrix or so forth. These
may or may not contain geometric information such as 3D structure.
The generative output for the protein could be encoded as a sequence,

matrix or graph. For simplicity, we anchor our discussion on models
that generate amino acid sequences or structures in the form of 3D
coordinates, but much of our discussion applies equally to other types
of generative modeling problems (Fig. 1). More precisely, a conditional
generative model maps each condition y to a conditional probability
distribution, pθ(X | Y = y). For each setting, Y = y, the model represents
a different conditional probability distribution over X. For example,
while a backbone-conditional generative model conditions on one spe-
cific set of backbone coordinates for each use case, the overall model
is trained with the goal that any set of 3D coordinates could be used.

Conditional models need not be retrained for every new condition
and might be able to interpolate between conditions they were trained
on. By jointly modeling all the conditions, conditional generative
models can learn each conditional distribution in a way that borrows
relevant information from similar conditions. For example, when
applying a conditional generative model for fixed backbone sequence
design, we may not have trained on examples of the exact backbone
structure of interest, but the model may nevertheless have learned
from other similar or partially similar backbones, allowing the model to
generalize to never-observed backbones. Therefore, use of conditional
generative models is particularly compelling when the exact condition
of interest was not present, or only rarely present, in the training data,
but related conditions are abundant. Critically, the desired generality
of conditional generative models means that they correspondingly
need to learn from a wide variety of data that sufficiently encapsulate
the intended use cases. The choice of training data is a subjective
decision that directly influences the resulting model; it expresses our
beliefs about which protein distributions we seek to learn. Although
practically one can always generate outputs for any specifiable condi-
tion, there is no guarantee of correctness for any generated outputs.

Training and sampling from conditional generative models
Machine learning models have free parameters that need to be learned
during the training procedure. When we train a model on data, we select
(‘learn’) one specific set of parameter values that is ‘best’ suited to the
training data. To learn the parameters of a model, be it a neural network
or a classical statistical model, we must define a loss function that tells
us how much we ‘lose’ by using a particular set of parameters—that is,
how ‘inappropriate’ a parameter setting is for the training data. A clas-
sical objective function from statistics is that of the likelihood of the
observed data, which, when maximized, yields maximum likelihood
estimation (MLE) of the parameters. One appealing aspect of MLE is that
it is consistent: as we get increasingly more training data, the estimated
parameters yield a distribution that is increasingly closer to the true
distribution—assuming that the model class encompasses the true data
distribution. In deep learning, MLE is sometimes equivalently described
as minimizing the cross-entropy between the observed distribution and
the predicted distribution—an information-theoretic notion to meas-
ure the difference between two distributions. In sequence generation

 Check for updates

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-02115-w
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-023-02115-w&domain=pdf

nature biotechnology Volume 42 | February 2024 | 196–199 | 197

Primer

mapping from condition to output. Sequences (or structures) that
are more likely (according to the model) to satisfy the condition will
have higher conditional likelihoods and are more likely to be sampled.
However, by chance alone, we may sample sequences that do not satisfy
the condition at all.

Conditional generative models for sequences
Conditional generative models for protein sequences might be set
up to condition on the protein function, the protein family1 or the
backbone structure7–9. These models are heavily relied upon as a second
conditional-generative step after first using a generative model to
generate the protein backbone2,4,5. One technical challenge in sequence
generation, for both conditional and unconditional generative models,
is the vast number of theoretically possible sequences: 20N possible
amino acid sequences can be generated for a protein of length N.

contexts, MLE is sometimes equivalently described as minimizing
the perplexity—a more human-interpretable quantity indicating the
average uncertainty at each position. To minimize the loss, we start
with some (typically random) initial setting of the parameters and then
iteratively refine them using techniques from numerical optimization,
typically gradient descent, until the parameters converge according to a
predefined stopping criterion, such as when the validation loss changes
beneath some threshold. Once model parameters have been learned,
we can use the model to conditionally generate protein sequences
or structures—that is, to sample from the model to produce proteins
that have a high likelihood, assuming the condition has been satisfied.
Most learned conditional distributions are non-deterministic (that is,
stochastic), meaning that a variety of samples would be generated from
one condition. This stochasticity arises from the fact that numerous
outputs may satisfy a given condition, and from the uncertainty in the

Error-prone PCR

Variants for laboratory screening

Generative models for protein variants

Site-directed
recombination

Rational design

Unconditional generative model Conditional generative model

Positive examples of sequences
(e.g., homolog sequences)

pθ(X)

Training data Training data
X

Unconditional generative model

Parameter estimation

(X,Y)

Pairs of sequences and conditions
(e.g., pairs of sequences and backbone coordinates)

Parameter estimation

pθ(X | Y)Conditional generative model

Example: Potts model for sequences
from the same family

Example: �xed-backbone sequence design model

Conditional density estimation (for ranking and
ltering) Conditional sampling (for generation)

Candidate variants

+

Condition Conditional likelihoods

Filtered variants

Condition

pθ(X = | Y =) pθ(X | Y =)
Conditional distribution

ATLDSWLSNEATVARTAILNNIGADGAWVSGA
DSGIVVASPSTDNPDYFYTWTRDSGLVIKTLVD
LFRNGDTDLLSTIEHYISSQAIIQGVSNPSGD…Fixed

backbone
design

Sampled variants

a

Sca�olding

Function Active site Structure Sequence

b

6
1

1
4

6
1

Family-specific sequence generation

Structure generation from annotations

Condition
Conditional generative model

Output

Fig. 1 | Overview of generative models for protein engineering. a, Generation
of protein sequences is a core part of protein engineering and other bioengineering
tasks. In addition to more classical laboratory generative processes such as error-
prone PCR and site-directed recombination, along with physics-based rational
sequence design methods, we are now finding that machine learning-based
generative models are emerging as a new and powerful sequence generation

approach. b, Conditional generative models can condition on, and generate,
different types of entities in protein engineering, such as generating sequence
from structure (such as in fixed-backbone sequence design), sequence from
function, or full structure from partial structure (such as scaffolding around
a specified active site geometry). Protein structure adapted from D. Goodsell,
RCSB PDB, https://doi.org/10.2210/rcsb_pdb/mom_2006_2, 2006.

http://www.nature.com/naturebiotechnology
https://doi.org/10.2210/rcsb_pdb/mom_2006_2

nature biotechnology Volume 42 | February 2024 | 196–199 | 198

Primer

Consequently, generative models for sequences are built on strate-
gies to break down both the modeling and the sampling problems
into smaller, more manageable parts. A common strategy is to factor-
ize the conditional probability distribution—that is, decompose the
likelihood into separate factors, where each factor is itself manageable
and all factors can be easily combined by multiplying them together. A
classic example of a class of unconditional models are profile hidden
Markov models (HMMs), used for sequence alignment, classification
and generation. These models assume that the amino acid or nucleotide
at one position depends only on the previous position (or insertion/
deletion), thereby making it a autoregressive model. HMMs as simple
autoregressive models yield algorithms for training and sampling that
scale linearly in the length of the sequence. However, many problems
require more sophisticated dependencies between amino acids at dif-
ferent positions for accurate modeling. These more complex depend-
encies can be captured, for example, by composing multiple modeling
layers together, such as in Transformer-based autoregressive models.
These models can better capture long-range dependencies across a
sequence. Despite the added complexity, these models, like HMMs,
break down the sequence generation problem sequentially, generating
one amino acid at a time. In contrast to HMMs, which are a special case
of autoregressive models, more general autoregressive models assume
that each amino acid may depend on all the previous amino acids.

One limitation of autoregressive models is that, naively, they can
only be used to generate sequences in one specific chosen sequential
ordering. To address this limitation, one could explicitly train models
with different orderings, so-called ‘order-agnostic’ models, and learn
more flexible autoregressive models that can generate sequences in
arbitrary orders. The factorization of a conditional distribution need
not, and typically does not, reflect any causal mechanism. However,
different factorizations or orderings of variables will generally lead
to different models, each of which may be more or less useful. Beyond
HMMs and more general autoregressive models, Potts models—also
known as Markov random fields—are designed to explicitly capture
the interaction between all pairs of positions in a sequence. How-
ever, Potts models are limited in that only pairwise interactions can
be explicitly modeled, and not higher-order interactions. Variational
autoencoders, another class of unconditional generative models
that can, in principle, model interactions of arbitrarily high order,
have also been applied to modeling protein sequences and structures.

While any of the unconditional sequence-generative models could
in principle be adapted to serve as conditional generative models,
those with an autoregressive output layer tend to be the choice for
sequence generation (see also the Primer by Ruffolo and Madani). For
example, the ‘next-token’ language models in the GPT (Generative
Pretrained Transformer) series are also autoregressive conditional
generative models, where the condition is the initial prompt. In con-
ditional generation, autoregressive models condition on the input at
each step of the generation process, adjusting predictions on the basis
of both the condition and the portion of the sequence that has so far
been generated. Modern-day autoregressive conditional generative
models typically employ a neural network architecture to parameterize
the probability distribution. Consequently, the same neural network
considerations that emerge in other general machine learning settings
similarly emerge here. That is, the user must consider architecture
choices such as whether or not to use convolution and attention layers,
how many layers to use, and the width of each layer. The neural network
architecture could be graph-based, could use geometric features, and
could encode certain symmetries of the physical world, such as the

symmetry that a protein is the same protein no matter how we rotate
it in space (that is, equivariant or invariant to 3D rotations). As these
neural network modeling considerations depend on the specific prob-
lem settings, there is no universal solution, and the choice is guided
by domain knowledge, experience, computational cost and empirical
comparisons. Having said that, in practice, an encoder–decoder archi-
tecture is used frequently for autoregressive conditional generative
models. The encoder network encodes the input condition y into a
‘hidden’ or latent representation, and the decoder network decodes
the hidden representation into a conditional sequence distribution.
Besides encoder–decoder architectures, decoder-only architectures
have also been used for conditional generation, whereby sequences
are conditioned directly on a label for the protein family.

Although named ‘generative’ models, many conditional gene
rative models can also be used for scoring and ranking sequences. To
do so, the conditional likelihoods of a set of candidate sequences are
computed, yielding a probabilistic score for each candidate sequence.
These conditional likelihoods, pθ(X = x | Y = y), can be used to rank
how likely a sequence x is to satisfy the given condition y, in compari-
son to other possible sequences. This type of scoring and ranking
often emerges in zero-shot protein fitness prediction and variant
effect prediction.

Conditional generative models for structures
While protein sequences consist of a finite, discrete vocabulary of
20 amino acids, the 3D coordinates of protein structures are real values
containing geometric information; consequently, they introduce a
different set of modeling challenges and solutions. In contrast to an
autoregressive strategy, a common strategy for structure generation
is to break the sampling down into an iterative process over all coordi-
nates at the same time, where each sample of all coordinates depends
on the entire previous sample. Diffusion models, which adopt this
iterative approach, have recently emerged as a powerful class of models
for both unconditional and conditional structure generation. Instead
of directly estimating a (conditional) probability distribution over
structures, diffusion models estimate how the probability density of
such a distribution changes in local neighborhoods of the structure
space—that is, how the likelihood increases or decreases as the 3D
coordinates of the structure are perturbed. An intuitive analogy would
be to describe a path that someone took through the streets by listing
the new direction they took after every few steps, rather than to list
the set of actual map coordinates they traced out—the path can be
constructed from the directions and number of steps taken. Formally,
diffusion models learn the gradient of the probability distribution
rather than the distribution itself. The probability distribution can
implicitly be recovered from the gradient information, but learning
a distribution in this manner appears to have practical advantages.

At training time, first we iteratively ‘diffuse’ a protein structure
in the training data by gradually adding random noise to it, until it is
unrecognizable—that is, until it consists of either random 3D coordi-
nates or 3D coordinates corresponding to an unstructured polymer.
Then we train a neural network to learn how to reverse this diffusion
process, step by step, such that we can go from the unrecognizable
structure, or any intermediate thereof, to the original, well-formed
protein structure. In some cases, reverse diffusion models have been
learned from scratch, while in others, advances in protein folding
models have been repurposed and fine-tuned to perform the reverse
diffusion. After the model has been trained, we can generate struc-
tures by starting with a random set of 3D coordinates and iteratively

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-024-02123-4

nature biotechnology Volume 42 | February 2024 | 196–199 | 199

Primer

applying the learned reverse diffusion model, each time incrementally
adjusting the 3D coordinates to move toward more likely coordinates,
according to the implicit likelihood of the model. For a well-trained
model, the reverse diffusion should yield a nicely structured protein,
having started with random coordinates. While this process may seem
analogous to following a force field in molecular dynamics simulations,
the diffusion process in diffusion models does not necessarily carry
physical meaning.

There are two main strategies to enable diffusion models to be
conditional diffusion models, both having been used for protein
structure generation. In ‘classifier-free guidance’2,4,10, the generative
process that reverses the diffusion process—described by a neural
network—takes in a ‘condition tag’ at the beginning that enables it to
tailor the process accordingly, at both training and test time. Such
models must be trained directly with the desired class of use-case
conditions, as the conditioning is baked into the neural network. In
contrast, in ‘classifier-guided’ conditioning5, the conditioning does
not happen in the neural network; rather, the neural network is paired
with an external classifier that has been separately trained to classify,
for example, whether a 3D structure is likely to satisfy the condition
of interest; consequently, the diffusion process and the conditioning
are decoupled. Classifier-guided conditioning thus allows the same
unconditional diffusion model to be easily repurposed for a wide range
of conditions without retraining it. Consequently, the classifier-guided
approach has the potential to accommodate a wide range of different
input condition modalities. Of course, the quality of the conditional
generation depends critically on the quality of the classifier. Both the
classifier-free and classifier-guided conditioning approaches have been
applied to protein structure generation tasks, including condition-
ing on secondary structures, coarse contact maps, partial structural
motifs, symmetry and biochemical properties.

Final considerations
To date, protein generative model have typically generated either
sequences or structures, but rarely both. A typical workflow would be
to first generate a backbone structure conditioned on some desired
property and then, conditioned on this generated structure, generate
a sequence—where each of these two generation steps uses a separate
model, one before the other. This two-step generation process comes
with limitations, including the inability to generate more fine-grained
structure that includes the positions of all atoms rather than just the
backbone atoms, because the number and identities of the side-chain
atoms are tied to the choice of the amino acid sequence. Efforts are
now underway to do these steps jointly.

Unlike the case for generated images and texts, the average
human cannot look at a generated protein sequence or structure and
decide whether it meets their needs. Rather, we require expensive and
time-consuming experimental work to validate any generated proteins.
Hence, generative biology is in a more difficult position than generative
modeling for images and texts. The potential rewards for engineering
therapeutics and enzymes are correspondingly large. A potential pitfall

of conditional generative models is in the sometimes-mistaken belief
that once we build such a model, in sampling from it we will achieve
the desired proteins. However, these models are only as good as the
data and components that make them up, including data containing
critical information about the mapping from condition to output, such
as from function to sequence. Limited knowledge about functional
mappings in particular is perhaps the most wide-open challenge in
protein engineering today, one that cannot be overcome by even the
largest or most sophisticated models. Indeed, while machine learning
has rapidly transformed the field of structure prediction, there remains
substantial work to be able to reliably predict protein function. Conse-
quently, it will generally be more difficult to build accurate conditional
generative models for functions not primarily driven by macroscopic
structure, such as enzymatic activity. For enzymes, generative models
now typically condition on an already known active site; this is not rede-
signed. Functions that are largely determined by relatively macroscopic
structure, however, such as binding, are currently in reach. Our ability
to predict structure better than function is due in part to the relative
dearth of data for protein function, while protein structures are now
relatively numerous. Efforts have been made to generate proteins
by conditioning on text-based functional annotations, leveraging
advances in natural language processing. However, annotations can be
imprecise and unreliable, and may be less suitable for helping a
model to figure out how to share data across similar scenarios as
compared to more fundamental physical descriptors.

Chloe Hsu      , Clara Fannjiang     & Jennifer Listgarten     
University of California, Berkeley, Berkeley, CA, USA.

 e-mail: chloehsu@berkeley.edu; jennl@berkeley.edu

Published online: 15 February 2024

References
1.	 Madani, A. et al. Nat. Biotechnol. 41, 1099–1106 (2023).
2.	 Watson, J. L. et al. Nature 620, 1089–1100 (2023).
3.	 Wang, J. et al. Science 377, 387–394 (2022).
4.	 Krishna, R. et al. Preprint at bioRxiv https://doi.org/10.1101/2023.10.09.561603 (2023).
5.	 Ingraham, J. et al. Nature 623, 1070–1078 (2023).
6.	 Eguchi, R. R., Choe, C. A. & Huang, P. S. PLOS Comput. Biol. 18, e1010271 (2022).
7.	 Ingraham, J., Garg, V., Barzilay, R. & Jaakkola, T. In Advances in Neural Information

Processing Systems Vol. 32 (2019).
8.	 Dauparas, J. et al. Science 378, 49–56 (2022).
9.	 Hsu, C. et al. In Intl Conf. Machine Learning 8946–8970 (PMLR, 2022).
10.	 Anand, N. & Achim, T. Preprint at arXiv https://doi.org/10.48550/arXiv.2205.15019 (2022).

Acknowledgements
We thank A. Busia, H. Jiang, M. Lukarska, H. Nisonoff, Y. Song and J. Xiong for discussions and
feedback.

Competing interests
J.L. consults for Fable Tx and Inscripta. C.H. is a cofounder of Escalante Bio. The remaining
authors declare no competing interests.

Additional information
Peer review information Nature Biotechnology thanks the anonymous reviewers for their
contribution to the peer review of this work.

http://www.nature.com/naturebiotechnology
http://orcid.org/0000-0002-7743-3168
http://orcid.org/0000-0002-0060-2082
http://orcid.org/0000-0002-6600-1431
mailto:chloehsu@berkeley.edu
mailto:jennl@berkeley.edu
https://doi.org/10.1101/2023.10.09.561603
https://doi.org/10.48550/arXiv.2205.15019

	Generative models for protein structures and sequences

	Training and sampling from conditional generative models

	Conditional generative models for sequences

	Conditional generative models for structures

	Final considerations

	Acknowledgements

	Fig. 1 Overview of generative models for protein engineering.

