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Generative models for protein structures  
and sequences

Chloe Hsu, Clara Fannjiang & Jennifer Listgarten

Models like ChatGPT and DALL-E2 generate 
text and images in response to a text prompt. 
Despite different data and goals, how can 
generative models be useful for protein 
engineering?

Natural evolution creates new proteins through stochastic processes  
such as mutation and recombination, coupled with the screening  
filter of organismal fitness. In the past few decades, proteins have been 
engineered with directed evolution, which roughly mimics natural 
evolution, only doing so with a user-specified filter to select desired 
properties. Directed evolution typically starts from a known protein 
and explores only similar sequences, typically by using stochastic labo-
ratory methods for sequence modification. Diversification, naturally 
occurring or otherwise, can be thought of as a generative mechanism 
for protein sequence candidates. With recent advances in machine 
learning, along with advances in modern-day sequence synthesis, it 
is becoming feasible to use more complex generative mechanisms 
to explore much broader swaths of protein spaces more efficiently. 
A wide variety of machine learning modeling strategies can be use-
ful for different problems involving proteins. Herein we focus on  
generative models—those that can generate protein sequences  
and/or structures—and particularly on conditional generative models 
that generate sequences and/or structures that are consistent with a 
specified property such as a protein family1, an active-site structure 
(called functional site scaffolding)2–6 or a specified backbone structure 
(called inverse folding)7–10.

Although conditional generative models for protein sequences 
and structures are relatively new, they are closely related to uncon-
ditional generative models, such as profile hidden Markov models 
(HMMs) and Potts models. An unconditional generative model learns 
a probability distribution, pθ(X), where the values in θ are the learned 
parameters of the generative model. Implicitly, the model represents 
a distribution for just one condition. For example, a Potts model for 
one protein family learns the distribution of amino acid sequences,  
X, of proteins in that family. When there are sufficiently many evolution-
arily related homologs for the protein of interest, such unconditional 
generative models can be a simple, fruitful strategy for generating 
diverse protein sequences.

In contrast to their unconditional counterparts, conditional 
generative models learn not only one probability distribution for 
one condition, but rather, a collection of many probability distribu-
tions, one for each of many conditions. In principle, the condition 
in a conditional generative model can be any property, specified  
as a one-dimensional scalar, a vector, a matrix or so forth. These  
may or may not contain geometric information such as 3D structure. 
The generative output for the protein could be encoded as a sequence, 

matrix or graph. For simplicity, we anchor our discussion on models 
that generate amino acid sequences or structures in the form of 3D 
coordinates, but much of our discussion applies equally to other types 
of generative modeling problems (Fig. 1). More precisely, a conditional 
generative model maps each condition y to a conditional probability 
distribution, pθ(X | Y = y). For each setting, Y = y, the model represents 
a different conditional probability distribution over X. For example, 
while a backbone-conditional generative model conditions on one spe-
cific set of backbone coordinates for each use case, the overall model 
is trained with the goal that any set of 3D coordinates could be used.

Conditional models need not be retrained for every new condition 
and might be able to interpolate between conditions they were trained 
on. By jointly modeling all the conditions, conditional generative 
models can learn each conditional distribution in a way that borrows 
relevant information from similar conditions. For example, when 
applying a conditional generative model for fixed backbone sequence 
design, we may not have trained on examples of the exact backbone 
structure of interest, but the model may nevertheless have learned 
from other similar or partially similar backbones, allowing the model to 
generalize to never-observed backbones. Therefore, use of conditional 
generative models is particularly compelling when the exact condition 
of interest was not present, or only rarely present, in the training data, 
but related conditions are abundant. Critically, the desired generality 
of conditional generative models means that they correspondingly 
need to learn from a wide variety of data that sufficiently encapsulate 
the intended use cases. The choice of training data is a subjective  
decision that directly influences the resulting model; it expresses our 
beliefs about which protein distributions we seek to learn. Although 
practically one can always generate outputs for any specifiable condi-
tion, there is no guarantee of correctness for any generated outputs.

Training and sampling from conditional generative models
Machine learning models have free parameters that need to be learned 
during the training procedure. When we train a model on data, we select 
(‘learn’) one specific set of parameter values that is ‘best’ suited to the 
training data. To learn the parameters of a model, be it a neural network 
or a classical statistical model, we must define a loss function that tells 
us how much we ‘lose’ by using a particular set of parameters—that is, 
how ‘inappropriate’ a parameter setting is for the training data. A clas-
sical objective function from statistics is that of the likelihood of the 
observed data, which, when maximized, yields maximum likelihood 
estimation (MLE) of the parameters. One appealing aspect of MLE is that 
it is consistent: as we get increasingly more training data, the estimated 
parameters yield a distribution that is increasingly closer to the true 
distribution—assuming that the model class encompasses the true data 
distribution. In deep learning, MLE is sometimes equivalently described 
as minimizing the cross-entropy between the observed distribution and 
the predicted distribution—an information-theoretic notion to meas-
ure the difference between two distributions. In sequence generation  
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mapping from condition to output. Sequences (or structures) that 
are more likely (according to the model) to satisfy the condition will 
have higher conditional likelihoods and are more likely to be sampled. 
However, by chance alone, we may sample sequences that do not satisfy 
the condition at all.

Conditional generative models for sequences
Conditional generative models for protein sequences might be set  
up to condition on the protein function, the protein family1 or the  
backbone structure7–9. These models are heavily relied upon as a second  
conditional-generative step after first using a generative model to 
generate the protein backbone2,4,5. One technical challenge in sequence 
generation, for both conditional and unconditional generative models,  
is the vast number of theoretically possible sequences: 20N possible 
amino acid sequences can be generated for a protein of length N. 

contexts, MLE is sometimes equivalently described as minimizing 
the perplexity—a more human-interpretable quantity indicating the 
average uncertainty at each position. To minimize the loss, we start 
with some (typically random) initial setting of the parameters and then 
iteratively refine them using techniques from numerical optimization, 
typically gradient descent, until the parameters converge according to a 
predefined stopping criterion, such as when the validation loss changes 
beneath some threshold. Once model parameters have been learned, 
we can use the model to conditionally generate protein sequences 
or structures—that is, to sample from the model to produce proteins 
that have a high likelihood, assuming the condition has been satisfied. 
Most learned conditional distributions are non-deterministic (that is, 
stochastic), meaning that a variety of samples would be generated from 
one condition. This stochasticity arises from the fact that numerous 
outputs may satisfy a given condition, and from the uncertainty in the 
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Fig. 1 | Overview of generative models for protein engineering. a, Generation  
of protein sequences is a core part of protein engineering and other bioengineering 
tasks. In addition to more classical laboratory generative processes such as error-
prone PCR and site-directed recombination, along with physics-based rational 
sequence design methods, we are now finding that machine learning-based 
generative models are emerging as a new and powerful sequence generation 

approach. b, Conditional generative models can condition on, and generate, 
different types of entities in protein engineering, such as generating sequence 
from structure (such as in fixed-backbone sequence design), sequence from 
function, or full structure from partial structure (such as scaffolding around 
a specified active site geometry). Protein structure adapted from D. Goodsell, 
RCSB PDB, https://doi.org/10.2210/rcsb_pdb/mom_2006_2, 2006.
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Consequently, generative models for sequences are built on strate-
gies to break down both the modeling and the sampling problems 
into smaller, more manageable parts. A common strategy is to factor-
ize the conditional probability distribution—that is, decompose the 
likelihood into separate factors, where each factor is itself manageable 
and all factors can be easily combined by multiplying them together. A 
classic example of a class of unconditional models are profile hidden 
Markov models (HMMs), used for sequence alignment, classification 
and generation. These models assume that the amino acid or nucleotide 
at one position depends only on the previous position (or insertion/
deletion), thereby making it a autoregressive model. HMMs as simple 
autoregressive models yield algorithms for training and sampling that 
scale linearly in the length of the sequence. However, many problems 
require more sophisticated dependencies between amino acids at dif-
ferent positions for accurate modeling. These more complex depend-
encies can be captured, for example, by composing multiple modeling 
layers together, such as in Transformer-based autoregressive models. 
These models can better capture long-range dependencies across a 
sequence. Despite the added complexity, these models, like HMMs, 
break down the sequence generation problem sequentially, generating 
one amino acid at a time. In contrast to HMMs, which are a special case 
of autoregressive models, more general autoregressive models assume 
that each amino acid may depend on all the previous amino acids.

One limitation of autoregressive models is that, naively, they can 
only be used to generate sequences in one specific chosen sequential 
ordering. To address this limitation, one could explicitly train models 
with different orderings, so-called ‘order-agnostic’ models, and learn 
more flexible autoregressive models that can generate sequences in 
arbitrary orders. The factorization of a conditional distribution need 
not, and typically does not, reflect any causal mechanism. However, 
different factorizations or orderings of variables will generally lead 
to different models, each of which may be more or less useful. Beyond 
HMMs and more general autoregressive models, Potts models—also  
known as Markov random fields—are designed to explicitly capture  
the interaction between all pairs of positions in a sequence. How-
ever, Potts models are limited in that only pairwise interactions can 
be explicitly modeled, and not higher-order interactions. Variational 
autoencoders, another class of unconditional generative models  
that can, in principle, model interactions of arbitrarily high order, 
have also been applied to modeling protein sequences and structures.

While any of the unconditional sequence-generative models could 
in principle be adapted to serve as conditional generative models, 
those with an autoregressive output layer tend to be the choice for 
sequence generation (see also the Primer by Ruffolo and Madani). For 
example, the ‘next-token’ language models in the GPT (Generative 
Pretrained Transformer) series are also autoregressive conditional 
generative models, where the condition is the initial prompt. In con-
ditional generation, autoregressive models condition on the input at 
each step of the generation process, adjusting predictions on the basis 
of both the condition and the portion of the sequence that has so far 
been generated. Modern-day autoregressive conditional generative 
models typically employ a neural network architecture to parameterize 
the probability distribution. Consequently, the same neural network 
considerations that emerge in other general machine learning settings 
similarly emerge here. That is, the user must consider architecture 
choices such as whether or not to use convolution and attention layers, 
how many layers to use, and the width of each layer. The neural network 
architecture could be graph-based, could use geometric features, and 
could encode certain symmetries of the physical world, such as the 

symmetry that a protein is the same protein no matter how we rotate 
it in space (that is, equivariant or invariant to 3D rotations). As these 
neural network modeling considerations depend on the specific prob-
lem settings, there is no universal solution, and the choice is guided 
by domain knowledge, experience, computational cost and empirical 
comparisons. Having said that, in practice, an encoder–decoder archi-
tecture is used frequently for autoregressive conditional generative 
models. The encoder network encodes the input condition y into a 
‘hidden’ or latent representation, and the decoder network decodes 
the hidden representation into a conditional sequence distribution. 
Besides encoder–decoder architectures, decoder-only architectures 
have also been used for conditional generation, whereby sequences 
are conditioned directly on a label for the protein family.

Although named ‘generative’ models, many conditional gene
rative models can also be used for scoring and ranking sequences. To 
do so, the conditional likelihoods of a set of candidate sequences are 
computed, yielding a probabilistic score for each candidate sequence. 
These conditional likelihoods, pθ(X = x | Y = y), can be used to rank  
how likely a sequence x is to satisfy the given condition y, in compari-
son to other possible sequences. This type of scoring and ranking  
often emerges in zero-shot protein fitness prediction and variant  
effect prediction.

Conditional generative models for structures
While protein sequences consist of a finite, discrete vocabulary of  
20 amino acids, the 3D coordinates of protein structures are real values  
containing geometric information; consequently, they introduce a 
different set of modeling challenges and solutions. In contrast to an 
autoregressive strategy, a common strategy for structure generation 
is to break the sampling down into an iterative process over all coordi-
nates at the same time, where each sample of all coordinates depends 
on the entire previous sample. Diffusion models, which adopt this 
iterative approach, have recently emerged as a powerful class of models 
for both unconditional and conditional structure generation. Instead 
of directly estimating a (conditional) probability distribution over 
structures, diffusion models estimate how the probability density of 
such a distribution changes in local neighborhoods of the structure  
space—that is, how the likelihood increases or decreases as the 3D  
coordinates of the structure are perturbed. An intuitive analogy would 
be to describe a path that someone took through the streets by listing 
the new direction they took after every few steps, rather than to list 
the set of actual map coordinates they traced out—the path can be 
constructed from the directions and number of steps taken. Formally, 
diffusion models learn the gradient of the probability distribution 
rather than the distribution itself. The probability distribution can 
implicitly be recovered from the gradient information, but learning 
a distribution in this manner appears to have practical advantages.

At training time, first we iteratively ‘diffuse’ a protein structure 
in the training data by gradually adding random noise to it, until it is 
unrecognizable—that is, until it consists of either random 3D coordi-
nates or 3D coordinates corresponding to an unstructured polymer. 
Then we train a neural network to learn how to reverse this diffusion 
process, step by step, such that we can go from the unrecognizable 
structure, or any intermediate thereof, to the original, well-formed 
protein structure. In some cases, reverse diffusion models have been 
learned from scratch, while in others, advances in protein folding 
models have been repurposed and fine-tuned to perform the reverse 
diffusion. After the model has been trained, we can generate struc-
tures by starting with a random set of 3D coordinates and iteratively 
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applying the learned reverse diffusion model, each time incrementally 
adjusting the 3D coordinates to move toward more likely coordinates, 
according to the implicit likelihood of the model. For a well-trained 
model, the reverse diffusion should yield a nicely structured protein, 
having started with random coordinates. While this process may seem 
analogous to following a force field in molecular dynamics simulations, 
the diffusion process in diffusion models does not necessarily carry 
physical meaning.

There are two main strategies to enable diffusion models to be 
conditional diffusion models, both having been used for protein 
structure generation. In ‘classifier-free guidance’2,4,10, the generative 
process that reverses the diffusion process—described by a neural 
network—takes in a ‘condition tag’ at the beginning that enables it to 
tailor the process accordingly, at both training and test time. Such 
models must be trained directly with the desired class of use-case 
conditions, as the conditioning is baked into the neural network. In 
contrast, in ‘classifier-guided’ conditioning5, the conditioning does 
not happen in the neural network; rather, the neural network is paired 
with an external classifier that has been separately trained to classify, 
for example, whether a 3D structure is likely to satisfy the condition 
of interest; consequently, the diffusion process and the conditioning 
are decoupled. Classifier-guided conditioning thus allows the same 
unconditional diffusion model to be easily repurposed for a wide range 
of conditions without retraining it. Consequently, the classifier-guided 
approach has the potential to accommodate a wide range of different 
input condition modalities. Of course, the quality of the conditional 
generation depends critically on the quality of the classifier. Both the 
classifier-free and classifier-guided conditioning approaches have been 
applied to protein structure generation tasks, including condition-
ing on secondary structures, coarse contact maps, partial structural 
motifs, symmetry and biochemical properties.

Final considerations
To date, protein generative model have typically generated either 
sequences or structures, but rarely both. A typical workflow would be 
to first generate a backbone structure conditioned on some desired 
property and then, conditioned on this generated structure, generate 
a sequence—where each of these two generation steps uses a separate 
model, one before the other. This two-step generation process comes 
with limitations, including the inability to generate more fine-grained 
structure that includes the positions of all atoms rather than just the 
backbone atoms, because the number and identities of the side-chain 
atoms are tied to the choice of the amino acid sequence. Efforts are 
now underway to do these steps jointly.

Unlike the case for generated images and texts, the average 
human cannot look at a generated protein sequence or structure and 
decide whether it meets their needs. Rather, we require expensive and 
time-consuming experimental work to validate any generated proteins. 
Hence, generative biology is in a more difficult position than generative 
modeling for images and texts. The potential rewards for engineering 
therapeutics and enzymes are correspondingly large. A potential pitfall 

of conditional generative models is in the sometimes-mistaken belief 
that once we build such a model, in sampling from it we will achieve 
the desired proteins. However, these models are only as good as the 
data and components that make them up, including data containing 
critical information about the mapping from condition to output, such 
as from function to sequence. Limited knowledge about functional 
mappings in particular is perhaps the most wide-open challenge in 
protein engineering today, one that cannot be overcome by even the 
largest or most sophisticated models. Indeed, while machine learning 
has rapidly transformed the field of structure prediction, there remains 
substantial work to be able to reliably predict protein function. Conse-
quently, it will generally be more difficult to build accurate conditional 
generative models for functions not primarily driven by macroscopic 
structure, such as enzymatic activity. For enzymes, generative models 
now typically condition on an already known active site; this is not rede-
signed. Functions that are largely determined by relatively macroscopic 
structure, however, such as binding, are currently in reach. Our ability 
to predict structure better than function is due in part to the relative 
dearth of data for protein function, while protein structures are now 
relatively numerous. Efforts have been made to generate proteins 
by conditioning on text-based functional annotations, leveraging 
advances in natural language processing. However, annotations can be  
imprecise and unreliable, and may be less suitable for helping a  
model to figure out how to share data across similar scenarios as  
compared to more fundamental physical descriptors.
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