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Although early detection of pathology can greatly
improve patient outcomes, there are relatively few
good noninvasive molecular tools for diagnosis of
early-stage disease, such as premalignant cancer
[1,2], or for prognosis, such as identifying cardiac
patients at higher risk of dying (e.g. the Framingham
Heart Study), or of non-responsiveness to therapy
[3]. The development of satisfactory therapeutics is
also hampered by the lack of suitable bioassays that
evaluate drug efficacy or toxicity [4]. Therefore, there
is currently a pressing need to develop methodology
that allows for routine and reliable identification
and stringent validation of molecular indicators –
biomarkers – in readily accessible patient samples,
such as blood, urine or sputum. Such biomarkers

could provide a method for clinical monitoring of
broad classes of common illnesses (e.g. cancer, heart
disease and infection), for assessing the effectiveness
of therapeutic intervention regimes and for improving
the reliability and accuracy of clinical trials. However,
because of considerable disease heterogeneity, inter-
patient variation and other irrelevant sources of 
biological variability, biomarker discovery is extremely
challenging. Moreover, to a certain extent, biomarker
discovery presupposes knowledge of which variables,
such as irrelevant epiphenomena, account for con-
founding factors.

Because biochemical responses to disease or drug
action are likely to be reflected in the patterns of
protein expression and turnover in affected cells, 
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Practical proteomic biomarker discovery:
taking a step back to leap forward
Jennifer Listgarten and Andrew Emili

There is a pressing need for radically improved proteomic screening methods that
allow for earlier diagnosis of disease, for systematic monitoring of physiological
responses and for uncovering the fundamental mechanisms of drug action. Recent
developments in proteomic technology offer tremendous, yet untapped, potential to
yield novel biomarkers that are translatable to routine clinical use. Despite the
significant conceptual promise of comparative proteomic profiling as a research
platform for biomarker discovery, however, major hurdles remain for practical and
clinical implementation. In particular, there is growing recognition that rigorous
experimental design principles are urgently required to validate conclusively the
unproven methodologies currently being touted. Debate and confusion persist about
where the burden of proof lies: statistically, biologically or clinically? Moreover, there
is no consensus about what constitutes a meaningful benchmark. An important
question is how to achieve a scientifically rigorous, and therefore convincing, proof-
of-concept that can be accepted by the field. Key analytical challenges related to these
issues that must be addressed by the burgeoning biomarker community are discussed
here.
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tissues and, presumably, blood, proteomic profiling using
either targeted [5] or unbiased global [6] protein identi-
fication and quantification is expected to provide insight
into the pathophysiological changes that precede or 
accompany clinical presentation. Although numerous
promising immunoassay-based proteomic methods have
been developed in recent years (e.g. miniaturized and
multiplexed readout systems), protein mass spectrometry
(MS) has emerged, because of its versatility, sensitivity and
accuracy, as a technology of choice for identifying poten-
tially clinically useful molecular patterns in cancer [2],
heart disease [7] and other common ailments. The pio-
neering cancer profiling studies by Petricoin et al. [8,9]
suggested that the detection of proteomic ‘signatures’ in
serum by mass-spectrometry-based screening could offer
a substantial improvement over existing diagnostic strate-
gies in terms of sensitivity and specificity. However, despite
widespread initial optimism [10–12], the actual clinical
impact of large-scale high-throughput proteomic tech-
nologies on biomedical investigations of disease and drug
action has been limited to date, and substantial questions
have been raised regarding the validity of proposed screen-
ing procedures [3,13–19].

One could argue that the main reason for the present
failure to produce a convincing biomarker discovery exper-
iment stems not from technological limitations in detecting
trace amounts of disease-specific molecules, but rather from
fundamental difficulties in elucidating whether putative
biomarker patterns are truly clinically informative. In
other words, conclusively determining whether system-
atic proteomic measurements of state-specific fluctuations
in the levels of protein components in biological fluids
can be translated into clinical practice in an effective, con-
sistent and meaningful manner. However, as Ransohoff
[20] so rightly points out, ‘we cannot decide whether new
things do work by reasoning about whether they should
work’ – that is to say, the debate should be strictly evidence-
based, even if guided by scientific intuition.

Despite recent progress, a plethora of important unre-
solved analytical issues continue to hamper progress in
the field [10,21,22]. These difficulties are often compounded
by the fact that a limited number of primary tissue samples
is usually available for pilot screening studies, and the
multivariate proteomic datasets generated are usually 
extremely complex and subject to nonstatic biological 
influences. Nevertheless, despite documented and per-
ceived limitations in current proteomic screening method-
ologies, the prospect of systematic biomarker discovery
could be within reach. Given careful consideration and
resolution of key outstanding challenges, this rapidly
emerging field could be well poised for spinning proteomic
patterns into biomarker gold.

Evoking the evidence
Fundamentally, the goal of biomarker discovery is to find
a distinctive molecular signal with a clear-cut clinical

value. For example, earlier detection of disease [23], 
improved patient stratification and better monitoring of
therapeutic intervention [3], are all key milestones 
towards the establishment of personalized medicine [24].
Blood-based protein assays are widespread in clinical prac-
tice and generally have a meritorious, if somewhat spotty,
record in terms of patient impact. Some of the more
prominent success stories include the detection of liber-
ated cardiac muscle troponin for diagnosis of myocardial
infarction [25], the monitoring of heart failure patients
based on circulating brain natriuretic peptide levels [26]
and the screening of prostate-specific antigen levels in
serum from males at risk of prostate cancer [27].

To date, most clinically useful blood markers have been
found either serendipitously or through careful evalua-
tion of individual candidate proteins based on hypothe-
ses regarding a particular disease. As with many other 
aspects of biomedical research, current efforts in bio-
marker discovery have been mostly centered on high
throughput MS-based profiling of human-derived sam-
ples, such as blood and tissue biopsies [23]. Yet, despite
the pioneering and attention-grabbing reports of the 
preliminary findings of putative ovarian and prostate 
cancer signatures in blood using simple MS-based protein
screening of patient serum combined with sophisticated
statistical and machine learning algorithms [8,9], suc-
cessful translation of proteomic screening technology into
clinical and pharmaceutical practice has been lacking to
date.

The lack of a definitive demonstration of practical util-
ity, combined with a growing awareness of possible pit-
falls in current experimental protocols, has led to critical
voicing of the imperative for cogent benchmarks to sub-
stantiate platforms and claims [3,13–17]. Skeptics now
abound because of the lack of a clear consensus about
what constitutes rigorous experimental design and valida-
tion. A major impediment to developing a convincing bio-
marker discovery pipeline is the concern that proteomic
approaches are predisposed to uncharacterized bystander
effects; that is, the detection of irrelevant epiphenome-
non stemming from extraneous experimental factors,
such as spurious differences in the patient cohort like diet
or environment.

What the biomarker research community urgently
needs is an airtight, carefully designed and well-executed
experiment that conclusively demonstrates proof-of-
concept. The combined assortment of proteomic plat-
forms, computational tools and biological samples cur-
rently available might be sufficient for effective biomarker
discovery, but the field needs to take a collective pause to
define more clearly how experiments can effectively and
convincingly target the questions on hand and to address
current criticisms [3,13–19], thereby convincing the skep-
tics. Such a step will be the bridge to faster progress 
toward the application of biomarker profiling in a real
clinical setting.
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Patients are out of control
We endorse the view of Hartwell and colleagues [28], who
have proposed the use of well-defined experimentally
tractable model organisms, such as inbred laboratory
mouse strains, to validate proteomic profiling procedures
for the early detection of cancer – or other disease – in blood
samples. Animal models offer a tremendous advantage
because disease-affected tissue can be generated and 
accessed under tightly controlled experimental conditions
that minimize genetic or environmental differences,
which confound biomarker discovery in a heterogeneous
outbred human population. Although the candidate bio-
markers identified in a transgenic or knockout mouse
might not be orthologous to those in human patients, the
potential for rigorously establishing proof-of-principle of
the discovery process in such a well-controlled experimen-
tal setting is tremendous. Because the entire sample his-
tory, from genetic background through to phenotyping
and ending in collection of target tissue and blood, can
be more completely documented and accounted for, a
well-designed experiment in this domain would be far more
credible than the current standard of practice commonly
found in human trials.

If successful, such a landmark profiling study would
serve to validate the technical procedures used to generate
the proteomic datasets and the entire data analysis pipeline.
This would set the stage for embarking on the greater
challenge of genuine biomarker discovery using human
clinical specimens, which are far more likely to be subject
to factors beyond methodical investigative control.

Biomarker catch-22
The prevalent use of healthy human samples as a control
group in biomarker discovery studies is an obvious, but
perhaps unwise, choice. Predictive models (e.g. a classifier
such as a support vector machine) usually pick out a 
dominant signal over a more subtle signal. These terms
(dominant/subtle) are defined, crucially, with respect to
the case and control groups together. If the dominant
signal distinguishing between ovarian cancer patients
and healthy volunteers is, for example, a general inflam-
matory signature (such as a systemic acute phase response)
then a subtler ovarian-cancer-specific signal might never
be uncovered or appropriately modeled by such a com-
parative profiling experiment.

Inevitably, the selection of appropriate controls could
be a costly, time-consuming, iterative process. Suppose,
for example, that in a first-pass serum screening experiment
of breast cancer samples together with closely matched (to
the extent that this is known at the time of experimen-
tation) healthy case controls, only a systemic acute-phase
signal (or some other nonspecific response) is detected.
Then one knows that this factor needs to be taken into
consideration, and a new set of controls, which is thought
to be better matched in this respect, must be used in the
next phase of the study; for example, a different cohort

of cancer patients also thought to present with an acute-
phase response. Note that such a protocol requires iden-
tification and biological understanding of putative pre-
liminary biomarkers. It is not entirely clear how one can
avoid a seemingly endless experimental protocol.

An alternative, but probably unfeasible, approach that
does not require expert biological knowledge of the putative
biomarkers, would be to use an expansive control group
representative of the broader population that might reg-
ularly undergo the type of diagnostic test being consid-
ered. If sufficiently representative, such a population
would be expected to include healthy individuals, as well
as individuals at various stages of all common ailments.
Of course, gathering and screening such a comprehensive
set of specimens is not practical, especially for smaller,
preliminary pilot studies.

Although randomized controlled trials (the gold standard
of clinical drug trials) might seem at first glance to be a
natural remedy to this difficult situation, the search for
early-detection biomarkers is not amenable to such a
setup, because one cannot dole out the seeds of cancer to
one group  in the same way that one can assign different
drug regimens to two groups of patients (although this
could potentially be done in animals). That is in contrast
to drug efficacy clinical trials, in which cause can be con-
trolled to affect change; biomarker discovery is inherently
an observational science. Thus, the search for biomarker
discovery lies in very difficult terrain. However, the effort
to outline and apply the kind of rigorous experimental
and statistical guidelines that are now established in clini-
cal drug trials [29] to the area of biomarker discover [30] is
a very valuable approach. Nonetheless, much work remains
in drawing up analogous standardized biomarker discovery
guidelines partly, as mentioned above, because of the 
different nature of this fledgling area.

What you seek is what you get
If what ones seeks is an early marker for, for example,
some particular cancer of interest, then one must obtain
samples from patients either long before their cancer is
diagnosed (but who then go on to develop the cancer of
interest) or, at the very least, who are in the early stages
of disease. Other samples might not work as a reasonable
proxy because the biological hallmarks of cancer are in
most cases likely to progress with stage. Although late
stage pathology might contain a (possibly embedded) 
signal related to the early onset of cancer, this signal could
be overshadowed by more dominant late-stage expression
patterns. However, many biomarker studies use an ad hoc
mixture of stages, typically with very few early stage cancers.
These are, by definition, harder to come by in the absence
of reliable diagnostics and therefore such profiling might
never elucidate a signal of interest, if it exists. It is those
diseases currently lacking an effective early detection
screening method that are also most likely to benefit from
a successful biomarker project, yet these same diseases are
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the ones for which it is hardest to obtain early stage samples
(in fact, this can only be done prospectively). Animal
models offer a potential solution.

Burden of proof is in the pudding, not the toppings
What kind of statistical or machine learning methodologies
can we use or develop to guarantee that we have found
the biomarker we are seeking? Consider the following sit-
uation: you are provided with broad access to unlimited
samples taken from two specific classes of your choice –
a cancer and a control group. You run thousands of samples
from each group through a mass spectrometer, and then
hand the resulting data to your favorite machine learn-
ing specialist or biostatistician, who applies sophisticated
preprocessing followed by state-of-the-art predictive mod-
eling. They return and tell you that, based on the best 
statistical and machine learning methodology (and sup-
pose, for the sake of argument, that they know the
methodology perfectly, and that the methodology is per-
fect) they estimate that any future samples you give to
them, drawn from either of the same two populations and
processed in an identical way, could be accurately pre-
dicted with a sensitivity and specificity of 100%.

A ‘eureka’ moment for biomarker discovery, perhaps?
But what does such an experiment actually validate?
Regardless of what algorithms were used, theoretically, what
kind of meaningful clinical information can be garnered
from such a study? Can the entire biomarker pipeline be
validated? No. We can conclude that there is some inform-
ative signal – disease-specific perhaps, but possibly not –
that can be detected accurately, and then used to reliably
predict new samples if drawn from one of the same two
populations. The difficult, but crucial, questions about
whether this signal is disease specific, generalizable to the
screening population at large (unless this happened to be
exactly the control population) and of any biological con-
sequence, can never be answered by machine learning or
statistics alone. Statistical and machine learning methods
are not a crutch for poor experimental design nor, crucially,
can they elucidate fundamental insight from poorly 
designed experiments.

Overfitting is not an inherent limitation
A common staple of the biomarker literature is a state-
ment to the effect that overfitting has occurred, or that
overfitting might have occurred, or that overfitting is al-
ways a problem with large-scale high throughput data-
driven experimental paradigms, particularly with regards
to biomarker detection. Although it is certainly true that
improper use of machine learning and statistical techniques
can lead to overfitting, it is also true that this should not
be so and that this problem is easily avoided. Claiming
that overfitting is an inherent limitation in the biomarker
context is akin to stating that sloppy laboratory work is
an inherent limitation in biology; although sloppy bench
habits do exist, these are easily identified and overcome.

A technical discussion of how to avoid overfitting is beyond
the scope of this review; however, we briefly point out that
there are two main approaches: the use of cross-validation
(or resampling-based methods) and the use of Bayesian
methodology1 [31,32].

Machine learning buzzwords aren’t going to make or
break the field of biomarker discovery
Articles on biomarker discovery whose sole novel con-
tribution is presenting an existing fancy-sounding pre-
dictive machine learning algorithm X that has not yet
been presented to the biomarker community offer little
intellectual contribution, and do little to advance the
state-of-the-art in biomarker discovery. It is true that dif-
ferent algorithms will find different features and perhaps
perform differently [33] but the bottleneck, at present,
does not result from inability to obtain good prediction
performance. Rather, it is the entire experimental design
and validation process that is in dire need of fresh new
ideas before machine learning and statistics can truly play
an interesting role.

This is made evident by the fact that reported predictive
accuracies are extremely high or even perfect [13,34–37];
we do not need to improve upon these accuracies, but
rather to question whether these perfect results were gen-
erated using suitable test data [18,19,21,33,38]. Of course,
when one is sure that the data is appropriate, one can then
consider optimizing the choice of predictive algorithms to
achieve the necessarily extremely high sensitivity and
specificity that allow for reasonable positive predictive
value in the clinic. Additionally, many of the methods cur-
rently in use, for example, linear support vector machines,
logistic regression and neural networks without a hidden
layer, are small variations of one another and thus publi-
cation of a putative new method in the context of a 
proteomic dataset should be justified or at least discussed
in this context.

Instrumentation: focus on the calibration
It is now clear that the surface-enhanced laser desorption
and ionization time-of-flight (SELDI-TOF) MS instrumen-
tation used in the pioneering studies by Liotta and colleagues
[8,9] had insufficient resolution to allow for the unam-
biguous identification of the putative marker molecules,
which is needed if they are to be validated (ideally) using
an alternate methodology or for forming the basis of a
simplified, more widely adopted diagnostic [16]. Although
much attention has been paid to the need for meticulous

REVIEWS

1Cross-validation and resampling-based methods are essentially based
on extensions to the idea of a ‘hold out’ dataset. Bayesian methodology
intuitively limits model complexity using probabilistic parameter
averaging within a model class so that a highly complex model cannot
pick out a single best parameter setting – as can happen in many non-
Bayesian paradigms – if there is not enough data to warrant it. Essentially,
Bayesian methodology automatically adapts the complexity of a model
so that it is not greater than is warranted by the data (and in so doing,
avoids overfitting).
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sample preparation [39,40], relatively scant attention has
been given to the need for vigilance in calibrating existing
analytical systems so that they are appropriately tailored for
clinical pattern recognition. The newest generations of mass
spectrometer instruments (particularly the so-called hybrids)
are very sensitive, highly accurate and fast scanning, but
they remain subject to artifacts imposed by signal-to-noise
restrictions, skewed precision and systematic biases that
lead to misinterpretation and under-sampling [21,33] – lim-
itations that are often underappreciated by non-experts.
Measurement uncertainty is further confounded by the 
extreme complexity of most biological fluids, in particu-
lar blood with its daunting dynamic range window [10,40].

Given the current emphasis in the field on sample 
concentration, fractionation and depletion, insufficient
attention is given to testing platform reproducibility and
practical detection limits in a pertinent manner [18], such
as documenting the linearity or reproducibility of responses
of a tunable range of spiked protein standard in a germane
target mixture. Likewise, although the rapid advances in
hardware development made in the past few years have
resulted in perceived performance attributes dominating
much of the current scientific discussion, a solid under-
standing of their limitations has yet to emerge, with few
qualified estimates of how much of the proverbial biomarker
iceberg currently remains below the proteomic surface.

Benchmarking the benchmarks
At this point, the field would benefit from a collective target
or benchmark to stimulate future development. But what
constitutes a suitable benchmark for this type of problem?
One might consider a call for a generic experiment to 
assess new prediction algorithms like the CASP (critical
assessment of techniques for protein structure prediction)
or CAPRI (critical assessment of predicted interactions)
exercises do for protein structure prediction [41,42]. However,
the problem of biomarker discovery is somewhat differ-
ent. Whereas protein structure prediction has a clearly 
defined input and output (given, for example, X-ray crys-
tallography as a gold standard) with only a computational
algorithm in between, biomarker discovery encompasses
a diverse (albeit integrated) series of steps. Each step is 
dependent on the other, starting with a decision about
which samples are relevant for collection and processing,
followed by high-throughput measurement and only then
being tackled with computational and statistical methods.

It can even be argued that any benchmark data other
than raw patient samples can not serve as a true benchmark
because it has been subjected to part of the methodological

protocol decisions. Additionally, there is no gold standard
for biomarker discovery – spike-in experiments serve at
best as a consolation ‘bronze’ standard. As such, it is unlikely
that there can be a single feasible and conclusive type of
benchmarking exercise. Rather, benchmarking for bio-
marker discovery will be more loosely defined, most likely
constituting a series of experiments, each more convincing
than the next, or separately elucidating the validity of dif-
ferent components, until at long last, a putative biomarker
pipeline is shown to work in a realistic clinical setting.

However, more intermediate, although still quite com-
prehensive benchmark-type experiments could certainly
be helpful. For example, in a recent inspiring experiment,
Semmes et al. [43] reported on inter-laboratory calibra-
tion of SELDI platforms, followed by largely successful pre-
diction of cancer versus control at the various laboratory
sites when using the same raw samples.

There is an overarching need for a suite of benchmark-
ing exercises, ranging from those such as the Semmes et al.
[43] study, to calibration style benchmarking where, for
example, the linearity of instrument responsiveness is 
established [44], to the ultimate benchmark – real clinical
usage – as well as for many challenges in between, such
as data normalization, peak detection, identification and
quantification and, at some point, classification.

Onwards we march
The biomarker field, currently a disparate, rapidly evolving
and somewhat confused research domain, can draw strength
and motivation from successes in large-scale clinical 
trials (but should also heed recent cautionary tales). Although
the critical definition of ‘standards of excellence’ in bio-
marker research remains open to debate, sound perspec-
tives regarding appropriate computational procedures,
data interpretations and reporting mechanisms have 
recently been put forward [45]. We have pointed out a
basic difference between the problems of determining
drug efficacy and safety and that of discovering a bio-
marker, although the two problems are similar in that, 
ultimately, the only way to truly validate a biomarker will
be with large and expensive clinical trials that directly 
establish true biomedical value. However, thoughtfully
designed intermediate experiments will hasten us toward
such successes. Despite the ongoing controversy over the
merits of high throughput-based biomarker discovery, and
regardless of the depth of the challenges before us, the
biomarker community can steer to where the true path
lies by stepping back every now and then to critically 
reassess implied and explicit default assumptions.
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