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Abstract 

We describe Factored Spectrally Transformed Linear Mixed Models (FaST-LMM), an 

algorithm for genome-wide association studies that scales linearly in the number of individuals 

in both runtime and memory use. On Wellcome Trust data with 15,000 individuals, 

FaST-LMM runs an order of magnitude faster than current efficient algorithms. Our algorithm 

can analyze data for 120,000 individuals in just a few hours, whereas the current algorithms fail 

at even 20,000 individuals (http://mscompbio.codeplex.com).  
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The problem of confounding by population structure, family structure, and cryptic relatedness 

in genome-wide association studies (GWAS) is widely appreciated
1-7

. Statistical methods for 

correcting these confounders include linear mixed models (LMMs)
2-10

, genomic control, 

family-based association tests, structured association, and Eigenstrat
7
. In contrast to the other 

methods, LMMs have been shown capable of capturing all of these confounders 

simultaneously, without knowledge of which are present, and without the need to tease them 

apart
7
. Unfortunately, LMMs are computationally expensive relative to simpler models. In 

particular, the runtime and memory footprint required by these models scale as the cube and 

square of the number of individuals in the dataset, respectively. This bottleneck means that 

LMMs run slowly or not at all on currently or soon-to-be available large datasets. 

 

Roughly speaking, LMMs tackle confounders by using measures of genetic similarity to 

capture the probabilities that pairs of individuals share causative alleles.  Such measures 

include those based on IBD
10,11

 and the realized relationship matrix (RRM)
9,10,12

, and have 

been estimated with a small sample of markers (200-2000 in number)
2,4

. Herein, we take 

advantage of such sampling to make LMM analysis applicable to extremely large datasets. In 

particular, we introduce a reformulation of LMMs, called FaST-LMM for Factored Spectrally 

Transformed Linear Mixed Models. We show that, provided (1) the number of SNPs used to 

estimate genetic similarity between pairs of individuals is less than the number of individuals 

in the dataset (regardless of how many SNPs are to be tested) and (2) the RRM is used to 

determine these similarities, then FaST-LMM produces exactly the same results as a standard 

LMM, but with a runtime and memory footprint that is only linear in the number of individuals. 

FaST-LMM thus dramatically increases the size of datasets that can be analyzed with LMMs 

and additionally makes currently feasible analyses much faster.  

 

Our FaST-LMM algorithm builds on the insight that the maximum likelihood (ML)—or 

alternatively, the restricted maximum likelihood (REML)—of a LMM can be rewritten as a 

function of just a single parameter, , the ratio of the genetic variance to the residual 

variance
3,13

.  Consequently, the identification of the ML (or REML) parameters becomes an 

optimization problem over  only. The algorithm Efficient Mixed Model Association 

(EMMA)
3
 speeds up the evaluation of the log likelihood for any value of  which is ordinarily 

cubic in the number of individuals, by clever use of spectral decompositions. However, the 

approach requires a new spectral decomposition for each SNP tested (a cubic operation). The 

algorithms Efficient Mixed Model Association eXpedited (EMMAX) and Population 

Parameters Previously Determined (P3D)
4,5

 provide additional computational savings by 

assuming that variance parameters for each tested SNP are the same, removing the expensive 

cubic computation per SNP.   

 

In contrast to these methods, FaST-LMM requires only a single spectral decomposition to test 

all SNPs, even without assuming variance parameters to be the same across SNPs, and offers a 

decrease in memory footprint and additional speedups. A key insight behind our approach is 

that the spectral decomposition of the genetic similarity matrix makes it possible to transform 

(rotate) the phenotypes, SNPs to be tested, and covariates in such a way that this rotated data 

becomes uncorrelated and hence amenable to analysis with a linear regression model, which 

has a runtime and memory footprint linear in the number of individuals. 

 

In general, the size (the number of entries) of the required rotation matrix is quadratic in the 

number of individuals, and computing this matrix by way of a spectral decomposition has cubic 

runtime in the number of individuals. When the number of SNPs used to construct the genetic 

similarity matrix is less than the number of individuals, however, the size of the matrix required 



to perform the rotations is linear in the number of individuals (and linear in this number of 

SNPs), and the time required to compute it is linear in the number of individuals (and quadratic 

in this number of SNPs). Intuitively, these savings can be achieved because the intrinsic 

dimensionality of the space spanned by the individuals and SNPs used to construct the 

similarity matrix can never be higher than the smaller of these two values. Thus, we can always 

choose to perform operations in the smaller space without any loss of information, while the 

computations remain exact. This basic idea has been exploited previously
8,14

, but when applied 

to GWAS, would require expensive computations per SNP, making these approaches far less 

efficient than FaST-LMM.   

 

To achieve our linear runtime and memory footprint, the spectral decomposition of the genetic 

similarity matrix must be computable without the explicit computation of the matrix itself. The 

RRM has this property as do other matrices (Supplementary Note 1). A more formal 

description of FaST-LMM is given in Methods.  

 

We compared memory footprint and runtime for non-parallelized implementations of the 

FaST-LMM and EMMAX/P3D algorithms (Fig. 1). For the latter, we used the EMMAX 

implementation, which was no less efficient than P3D (in TASSEL) in terms of runtime and 

memory use. In the comparison, we used GAW14 data to construct synthetic datasets having 

roughly 1, 5, 10, 20, 50 and 100 times as many individuals and always the same number of 

SNPs (approximately 8K) as the original data. The largest such dataset contained 123,800 

individuals. We tested all SNPs and used them all to estimate genetic similarity. EMMAX 

would not run on the 20x, 50x, or 100x datasets, because the memory required to store the large 

matrices exceeded the 32 gigabytes (GB) available. In contrast, FaST-LMM, which did not 

require these matrices (because it bypassed their computation, using them only implicitly), 

completed the analyses using 28 GB of memory on the largest dataset. Runtime results 

highlight the linear dependence of the computations on the number of individuals when the 

numbers of individuals exceeds the 8K SNPs used to construct the RRM. Furthermore, 

computations remain practical within our approach even when the variance parameters are 

re-estimated for each test. 

 

It is known that the LMM with no fixed effects using an RRM constructed from a set of SNPs is 

equivalent to a linear regression of the SNPs on the phenotype, with weights integrated over 

independent Normal distributions having the same variance
9,10

. In this view, sampling SNPs 

for construction of the RRM can be seen as the omission of regressors, and hence an 

approximation. Nonetheless, SNPs could be sampled uniformly across the genome so that 

linkage disequilibrium would diminish the effects of sampling. To examine this issue, we 

compared association P values with and without sampling on the WTCCC data for the CD 

phenotype. Specifically, we tested all SNPs on chromosome 1 while using SNP sets of various 

sizes from all but this chromosome—the complete set (340K) and uniformly distributed 

samples of size 8K and 4K—to compute the RRM (Supplementary Note 2). The P values 

resulting from the complete and sampled sets were similar (Fig. 2). More important, the two 

algorithms made nearly identical calls of significance, using the genome-wide significance 

threshold of 5 × 10
-7

. Namely, 24 SNPs were called significant when the complete set was 

used, whereas the 8K and 4K analyses labeled only one additional SNP significant and missed 

none. By comparison, the Armitage trend test (ATT) labeled seven additional SNPs significant 

and missed none. Furthermore, the  statistic was similar for the complete, 8K, and 4K 

analyses—1.132, 1.173, 1.203, respectively—in contrast to  = 1.333 for the ATT. 

Corresponding Q-Q plots are shown in Supplementary Fig. 1. Finally, using these SNP 

samples to construct genetic similarity, FaST-LMM ran an order of magnitude faster than 



EMMAX: 23 and 53 minutes for the 4K and 8K FaST-LMM analyses, and 260 and 290 

minutes for the respective EMMAX analyses.  

 

With respect to selecting SNPs to estimate genetic similarity, an alternative to uniformly 

distributed sampling would be to choose SNPs in strong association with the phenotype.  On 

the WTCCC data, we found that using the 200 most strongly associated SNPs according to 

ATT outperformed the 8K sample ( = 1.135). 

 

There are several future directions.  One is to apply FaST-LMM to multivariate analyses. 

Once the rotations have been applied to the SNPs, covariates, and phenotype, then multivariate 

additive analyses, including those using regularized estimation methods, can be achieved in 

time linear in the number of individuals with no additional spectral decompositions or 

rotations. In addition, the time complexity of FaST-LMM can be further reduced by using only 

the top eigenvectors of the spectral decomposition to rotate the data (those with the largest 

eigenvalues). On the WTCCC data, use of fewer than 200 eigenvectors yielded univariate 

P values comparable to those obtained from many thousands of eigenvectors. Furthermore, the 

ideas behind FaST-LMM and Compressed Mixed Linear Models
4
 can be combined 

(Supplementary Note 1). Finally, the identification of associations between genetic markers 

and gene expression—eQTL analyses—can be thought of as multiple applications of GWAS
15

, 

making our FaST-LMM approach applicable to such analyses.  

 

Software updates for FaST-LMM, including source code and executables, are available from 

http://mscompbio.codeplex.com.  
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Figure 1. Memory footprint (a) and runtime (b) of FaST-LMM running on a single processor 

as a function of the number of individuals in synthetic datasets based on GAW14. In each run, 

we used 7,579 SNPs both to estimate genetic similarity (RRM for FaST-LMM and IBS for 

EMMAX) and to test for association. FaST-LMM full refers to an analysis where the variance 

parameters were re-estimated for each test, whereas FaST-LMM refers to estimating these 

parameters only once for the null model, as in EMMAX/P3D. FaST-LMM and FaST-LMM 

full had the same memory footprint. EMMAX would not run on the datasets that contained 20 

or more times the number of individuals in the GAW14 data, because the memory required to 

store the large matrices exceeded the 32 GB available.  

 

  



Figure 2. Accuracy of association P values resulting from SNP sampling on WTCCC data for 

the CD phenotype. Each point in the plot shows the negative log P values of association for a 

particular SNP from a LMM using a 4K SNP sample (y-axis) and all SNPs (x-axis) to compute 

the RRM. The complete set used all 340K SNPs from all but chromosome 1, whereas the 4K 

sample used equally spaced SNPs from these chromosomes. All 28K SNPs in chromosome 1 

were tested. Dashed lines show the genome-wide significance threshold (5 × 10
-7

). The 

correlation for the points in the plot is 0.97. A corresponding plot for an 8K sample looks 

essentially the same (correlation 0.98). 
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Online Methods 

Experimental Details 

The calibration of P values was assessed using the λ statistic, also known as the inflation factor 

from genomic control
1,18

. The value λ is defined as the ratio of the median observed to median 

theoretical test statistic. Values of λ substantially greater than (less than) 1.0 are indicative of 

inflation (deflation).  

 

The Genetic Analysis Workshop (GAW) 14 data
16

 consisted of autosomal SNP data from an 

Affymetrix SNP panel and a phenotype indicating whether an individual smoked a pack of 

cigarettes a day or more for six months or more. In addition to the curation provided by GAW, 

we excluded a SNP when either (1) its minor allele frequency was less than 0.05, (2) its values 

were missing in more than 5% of the population, or its allele frequencies were not in 

Hardy-Weinberg equilibrium (P < 0.0001). In addition, we excluded an individual with more 

than 10% SNP values missing. After filtering, there were 7,579 SNPs across 1,261 individuals. 

The data consisted of multiple races and numerous close family members—1,034 individuals 

in the dataset had parents, children, or siblings also in the dataset.  

 

We used the GAW14 data as the basis for creating large synthetic datasets to evaluate runtimes 

and memory use. Datasets GAW14.x, with x = 1, 5, 10, 20, 50, and 100 were generated. 

Roughly, we constructed the synthetic GAW14.x dataset by “copying” the original dataset x 

times. For each white, black, and Hispanic individual in the original data (1,238 individuals), 

we created x individuals in the copy. Similarly, we copied the family relationships among these 

individuals from the pedigree on the real data. For each individual with no parents, we sampled 

data for each SNP using the race-based marginal frequency of that SNP in the original dataset. 

We determined the SNPs for the remaining individuals from the parental SNPs assuming a rate 

of 38 recombination events per genome. We then sampled a phenotype for each individual 

from a generalized linear mixed model (GLMM) with a logistic link function whose 

parameters were adjusted to mimic that of the real data. In particular, we adjusted the offset and 

genetic-variance parameters of the GLMM so that (1) the phenotype frequency in the real and 

synthetic data were almost the same, and (2) the genetic variance parameter of a LMM fit to the 

real and synthetic data were comparable. We assumed that there were no fixed effects. 

Analysis of GAW14 and that of GAW14.1 had almost identical runtimes and memory 

footprints.  

 

The Wellcome Trust Case Control Consortium (WTCCC) 1 data consisted of the SNP and 

phenotype data for seven common diseases: bipolar disorder (BP), coronary artery disease 

(CAD), hypertension (HT), Chron’s disease (CD), rheumatoid arthritis (RA), type-I diabetes 

(T1D), and type-II diabetes (T2D)
17

. Each phenotype group contained about 1,900 individuals. 

In addition, the data included a set of approximately 1,500 controls from the UK Blood Service 

Control Group (NBS). The data did not include a second control group from the 1958 British 

Birth Cohort (58C), as permissions for it precluded use by a commercial organization. Our 

analysis for a given disease phenotype used data from the NBS group and the remaining six 

phenotypes as controls. In our initial analysis, we excluded individuals and SNPs as previously 

described
17

. The difference between values of λ from an (uncorrected) analysis using ATT, and 

the ATT values from the original analysis
17

 averaged 0.02 across the phenotypes with a 

standard deviation of 0.01, indicating that the absence of the 58C data in our analysis had little 

effect on inflation or deflation. In these initial analyses, we found a substantial 



over-representation of P values equal to one, and traced this to the existence of thousands of 

non-varying SNPs or single-nucleotide constants (SNCs). In addition, we found (not 

surprisingly) that SNPs with very low minor-allele frequencies led to skewed P value 

distributions. Consequently, we employed a more conservative SNP filter, also described by 

the WTCCC
17

, wherein a SNP was excluded if either its minor-allele frequency was less than 

1%, or it was missing in greater than 1% of individuals. After filtering, 368,584 SNPs 

remained.  

 

In the sampling and timing experiments, we included non-white individuals and close family 

members to increase the potential for confounding and thereby better exercise the LMM. In 

total, there were 14,925 individuals across the seven phenotypes and control. We used only the 

CD phenotype, because it was the only one that had appreciable apparent inflation according to 

ATT P values. We created the 8K and 4K SNP sets used to estimate genetic similarity from all 

but chromosome 1 by including every forty-second and every eighty-fourth SNP, respectively, 

along each chromosome. 

 

All analyses assumed a single additive effect of a SNP on the phenotype, using a 0/1/2 

encoding for each SNP. The FaST-LMM runs used the RRM, whereas the EMMAX runs used 

the IBS kinship matrix. Missing SNP data was mean imputed. A likelihood ratio test was used 

to compute P values for FaST-LMM. Runtimes were measured on a dual AMD six-core 

Opteron machine with a 2.6GHz clock and 32 GB of RAM. Only one core was used. 

FaST-LMM used the AMD Core Math Library.   

FaST-LMM 

In this section, we highlight important points in the development of the maximum likelihood 

version of FaST-LMM. A complete description, including minor modifications needed for the 

REML version, is given in Supplementary Note 1.  

 

The LMM log likelihood of the phenotype data, y (dimension n × 1), given fixed effects X 

(dimension n × d), which include the SNP, the covariates, and the column of ones 

corresponding to the bias (offset), can be written as 
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where N(r|m; Σ) denotes a Normal distribution in r with mean m and covariance matrix Σ; K 

(dimension n × n) is the genetic similarity matrix; I is the identity matrix; e (scalar) is the 

magnitude of the residual variance; σg
2
 (scalar) is the magnitude of the genetic variance; and β  

(dimension d × 1) are the fixed-effect weights.  

 

To efficiently estimate the parameters β, σg
2
 and σe

2
 and the log likelihood at those values, we 

can factor Equation 1. In particular, we let δ be σe
2
/ σg

2
 and USU

T
 be the spectral decomposition 

of K (where U
T
 denotes the transpose of U), so that Equation 1 becomes   
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where |K| denotes the determinant of matrix K. The determinant of the genetic similarity 

matrix, |U(S + δI)U
T
| can be written as |S + δI|. The inverse of the genetic similarity matrix can 

be rewritten as U(S + δI)
-1

U
T
. Thus, after additionally moving out U from the covariance term 

so that it now acts as a rotation matrix on the inputs (X) and targets (y), we obtain   
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The “Fa” in FaST-LMM gets its name from this factorization. As the covariance matrix of the 

Normal distribution is now a diagonal matrix S + δI, the log likelihood can be rewritten as the 

sum over n terms, yielding   
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where [X]I: denotes the i
th

 row of X. Note that this expression is equal to the product of n 

univariate Normal distributions on the rotated data , yielding the linear regression equation 
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To determine the values of δ, σg
2
, and β that maximize the log likelihood, we first differentiate 

Equation 2 with respect to β, set it to zero, and analytically solve for the ML value of β(δ). We 

then substitute this expression in Equation 2, differentiate the resulting expression with respect 

to   
 , set it to zero, and solve analytically for the ML value of σg

2
(δ). Next, we plug in the ML 

values of σg
2
(δ) and β(δ) into Equation 2 so that it is a function only of δ. Finally, we optimize 

this function of δ using a one-dimensional numerical optimizer based on Brent’s method 

(Supplementary Note 1).  

 

Note that, given δ and the spectral decomposition of K, each evaluation of the likelihood has a 

runtime that is linear in n. Consequently, when testing s SNPs, the time complexity is O(n
3
) for 

finding all eigenvalues (S) and eigenvectors (U) of K, O(n
2
s) for rotating the phenotype vector 

y, and all of the SNP and covariate data (that is, computing U
T
y and U

T
X), and O(Cns) for 

performing C evaluations of the log likelihood during the one-dimensional optimization over δ. 

Therefore, the total time complexity of FaST-LMM, given K, is O(n
3
 + n

2
s + Cns). By keeping 

δ fixed to its value from the null model (analogously to EMMAX/P3D), this complexity 

reduces to O(n
3
 + n

2
s + Cn). The size of both K and U is O(n

2
), which dominates the space 

complexity, as each SNP can be processed independently so that there is no need to load all 

SNP data into memory at once. In most applications, the number of fixed effects per test, d, is a 

single digit integer and is omitted in these expressions because its contribution is negligible.  

 

Next we consider the case where K is of low rank—that is, k, the rank of K is less than n, the 



number of individuals. This case will occur when the RRM is used and the number of (linearly 

independent) SNPs used to estimate it, sc=k, is smaller than n. For a more general exposition, 

wherein K is of low rank for other reasons—for example, by forcing some eigenvalues to 

zero—see Supplementary Note 1.  

 

In the complete spectral decomposition of K given by USU
T
, we let S be an n × n diagonal 

matrix containing the k non-zero eigenvalues on the top-left of the diagonal, followed by n - k 

zeros on the bottom-right. In addition, we write the n × n orthonormal matrix U as [U1, U2], 

where U1 (of dimension n × k) contains the eigenvectors corresponding to non-zero 

eigenvalues, and U2 (of dimension n × n - k) contains the eigenvectors corresponding to zero 

eigenvalues. Thus, K is given by USU
T
 = U1S1U1

T
 + U2S2U2

T
.  Furthermore, as S2 is [0], K 

becomes U1S1U1
T
, the k-spectral decomposition of K, so-called because it contains only k 

eigenvectors and arises from taking the spectral decomposition of a matrix of rank k. The 

expression K + δ I appearing in the LMM likelihood, however, is always of full rank (because 

δ>0):  

 

       (    )    [
      
   

]      

 

Therefore, it is not possible to ignore U2 as it enters the expression for the log likelihood. 

Furthermore, directly computing the complete spectral decomposition does not exploit the low 

rank of K. Consequently, we use an algebraic trick involving the identity U2 U2
T 

= I - U1 U1
T
 to 

rewrite the likelihood in terms not involving U2 (see Equation 3.4 in Supplementary Note 1). 

As a result, we incur only the time and space complexity of computing U1 rather than U.  

 

Given the  -spectral decomposition of K, the maximum likelihood of the model can be 

evaluated with time complexity O(nsk) for the required rotations and O(C(n + k)s) for the C 

evaluations of the log likelihood during the one-dimensional optimizations over δ. By keeping 

δ fixed to its value from the null model, as in EMMAX/P3D, O(C(n + k)s) is reduced to O(C(n 

+ k)). In general, the k-spectral decomposition can be computed by first constructing the 

genetic similarity matrix from k SNPs at a time complexity of O(n
2
sc) and space complexity of 

O(n
2
), and then finding its first k eigenvalues and eigenvectors at a time complexity of O(n

2
k). 

When the RRM is used, however, the k-spectral decomposition can be performed more 

efficiently by circumventing the construction of K, because the singular vectors of the data 

matrix are the same as the eigenvectors of the RRM constructed from that data 

(Supplementary Note 1). In particular, the  -spectral decomposition of K can be obtained 

from the singular value decomposition of the n × sc SNP matrix directly, which is an O(nsck) 

operation. Therefore, the total time complexity of low-rank FaST-LMM using δ from the null 

model is O(nsck + nsk + C(n + k)). Assuming SNPs to be tested are loaded into memory in 

small blocks, the total space complexity is O(nsc).  

 

Finally, we note that, for both the full and low-rank versions of FaST-LMM, the rotations (and, 

if performed, the search for δ for each test) are easily parallelized. Consequently, the runtime of 

the LMM analysis is dominated by the spectral decomposition (or singular value 

decomposition for the low-rank version). Although parallel algorithms for singular-value 

decomposition exist, improvements to such algorithms should lead to even greater speedups.  
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