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Abstract. Genome-wide association studies commonly examine one
trait at a time. Occasionally they examine several related traits with the
hopes of increasing power; in such a setting, the traits are not generally
smoothly varying in any way such as time or space. However, for function-
valued traits, the trait is often smoothly-varying along the axis of inter-
est, such as space or time. For instance, in the case of longitudinal traits
like growth curves, the axis of interest is time; for spatially-varying traits
such as chromatin accessibility it would be position along the genome.
Although there have been efforts to perform genome-wide association
studies with such function-valued traits, the statistical approaches devel-
oped for this purpose often have limitations such as requiring the trait to
behave linearly in time or space, or constraining the genetic effect itself
to be constant or linear in time. Herein, we present a flexible model for
this problem—the Partitioned Gaussian Process—which removes many
such limitations and is especially effective as the number of time points
increases. The theoretical basis of this model provides machinery for han-
dling missing and unaligned function values such as would occur when
not all individuals are measured at the same time points. Further, we
make use of algebraic re-factorizations to substantially reduce the time
complexity of our model beyond the naive implementation. Finally, we
apply our approach and several others to synthetic data before closing
with some directions for improved modelling and statistical testing.

Keywords: Genome-wide association study - Longitudinal traits -
Time-series traits -+ Functional traits - Function-valued traits - Linear
mixed models + Gaussian process regression - Radial basis function

1 Introduction

Genome-wide association studies commonly examine one trait at a time. Occa-
sionally they examine several related traits with the hopes of increasing power; in
such a setting, the traits are not generally smoothly varying in any way such as
time or space. However, with the advent of wearables for health and the “quan-
tified self” movement; the broad deployment of cheap sensors in domains such
as agriculture and breeding; and the approaching ubiquity of electronic health
records, we shall soon see the ubiquity of function-valued traits. Longitudinal
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traits are one example of function-valued traits—traits which can be viewed as
a smooth function of some variable. For example, that variable could be time in
a clinical history corresponding to a longitudinal trait, or it could be position in
the genome, corresponding to a spatial trait such as chromatin accessibility [1].
Such function-valued traits offer new opportunities to dissect genetics. However,
maximally benefiting from such opportunities requires that the rich, smoothly-
varying structure within these traits can be leveraged by the statistical model
of choice. Rich trait structure arises from constraints in the physical world such
as that time moves forward and is smoothly varying, or that the correlation
between positions on the genome is slowly decreasing according to genetic dis-
tance on the chromosome. Modelling approaches in these settings should take
into account such constraints while still allowing for flexibility in the shapes of
the traits. Furthermore, it stands to reason that the genetic effect might alter
the functional form of a trait, such as the shape of a growth curve, a pattern
of weight gain, bone loss, or electrocardiogram signal. Thus, flexible modelling
beyond linear genetic effects is also one of our goals. Figure 1 shows a set of sim-
ple canonical traits and genetic effects that we would like to be able to detect.
These canonical traits will also serve as the basis of our synthetic experiments
for comparing the behaviour of several modelling approaches. In these examples,
by design, a genetic effect which is constant or linear in time will fail to properly
model the data. Although these traits are rather idealized, they present a good
starting point with which to examine the problem.
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Fig. 1. Simulated traits with 100 time points taking on values uniformly spaced
between 0 and 12. Each plot shows what the mean (noise-free) trait looks like for
each of the SNP values 0 (blue), 1 (green) and 2 (red). The noise added (not shown) is
#4d with respect to both time and individuals. Note that we hear display the maximum
genetic effect for each kind of trait for visual clarity.

The simplest problem one might tackle in our chosen setting is to find out
which individual single-nucleotide polymorphisms (SNPs) are correlated to the
trait of interest, a so-called marginal test. Those that are correlated are then
assumed to have a reasonable probability of being causal for the trait, or of
tagging a nearby SNP which is causal for the trait. While it is also of interest to
test sets of SNPs jointly [2—4], we here focus on marginal SNP testing, leaving a
generalization to set tests for future work. The solution to this marginal testing
problem entails (1) proposing a statistical model of the data, and (2) obtaining
some weight-of evidence of a genetic effect such as a p-value or Bayes factor. In
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this work we focus primarily on the first task but discuss our future directions
for the second task in concluding.

Numerous approaches for analyzing function-valued genetic associations have
been proposed in recent years [1,4-15]. However, these do not necessarily make
effective use of the rich trait structure to increase power because they often
assume restrictive forms of the genetic effect or the trait itself. Also, in some
cases the statistical efficiency does not scale well with the number of time points,
which are expected to be quite numerous in the settings discussed earlier. Next
we give a brief overview of some of these approaches and their weaknesses in
tackling the kinds of problems we are interested in.

Sikorska et al. use an approximate linear mixed model that accounts for cor-
relation in time and assumes that a trait evolves over time in a linear manner;
they also assume that the SNP effect itself is additive. Musolf et al. first cluster
the trait without accounting for genetics and then seek genetic effects on the
cluster labels, thereby pre-supposing that all causal SNPs segregate the traits in
a similar manner. Shim et al. first apply a wavelet-transform to the trait data,
thereby transforming the traits to lie in a coordinate system based on (hierarchi-
cal) scales and locations; they then perform association testing in this new space.
While this approach enables flexible functions of time to be modelled, the SNP
effects are restricted to be linear because the wavelet transform itself is linear.
Das et al. construct a different Legendre polynomial-based model to model the
trait for each test SNP allele, learning each model in a largely independent man-
ner. They then test whether the time-specific mean effects are different between
the alleles, although it’s not clear how they combine time points in their statisti-
cal testing framework. Also note that Das et al. remove SNPs with minor allele
frequency (MAF) less than ten percent from their experiments since the MAF
dictates the amount of data available to each allele-specific model. Finally, there
has been some related work on detecting differential expression using Gaussian
Process regression which shares many aspects of our approach, while differing in
several respects including parameter sharing, independence among individuals,
and substantial differences in time complexity in the case of aligned time points,
partly owing to the use of a different noise model and inference algorithm [16].

In our work, we propose an extremely flexible approach for modelling
function-valued traits with genetic effects. In particular, our approach, based on
Gaussian Process (GP) regression with a Radial Basis Function (RBF) kernel [17]
at its core, can in principle capture any smoothly-varying trait in time, where the
smoothness is controlled by a “length scale” parameter. This length scale para-
meter is estimated using maximum likelihood, thereby effectively deducing the
complexity of the trait functional form directly from the data. As for the genetic
effect, similarly to Das et al., our model has three components corresponding to
three partitions of the data, yielding an extremely non-restrictive class of genetic
effects since the GP for each allele can look completely different from the other
alleles when no parameters are shared. In our experiments we assume that basic
properties such as the noise level and length-scale are likely to be common to
all alleles and hence tie these parameters together for more efficient statistical
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estimation. However, the model need not be used in this manner. Furthermore,
because the RBF kernel effectively integrates out the time points, the number of
model parameters does not scale with the number of time points, but is instead
fixed—a desirable property when many time points are observed. We call our
model the Partitioned GP for partitioned Gaussian Process regression.

2 Partitioned Gaussian Processes

As already mentioned our model uses at its core GP regression [17], a class of
models which encompasses linear mixed models, the more widely-used concept
in genetics [18-21]. The GP regression literature contains results not typically
found in the genetics community that we make use of including the use of RBF
kernels and Kronecker-product-based refactorizations of matrix-variate normal
probability distributions yielding computational efficiencies [22] in the case of
aligned and non-missing time points. Also, although we have not yet imple-
mented it, by virtue of using the GP machinery we can immediately access
variational approximations to reduce computational time complexity [23,24] in
the case of missing data or unaligned time points. We now formally introduce
our null model, followed by an exposition of how to do efficient computations in
it before introducing the alternative model and computation of p-values.

2.1 Null Model

Our null model, My, assumes that the SNP has no effect on the trait (and so
does not enter the model), but does capture correlation in time by way of an
RBF kernel. Let Y be the N x T matrix of traits for N individuals and 7" time
points. Let W be the NT x 1 times at which the traits were measured, and let
vec(Y) denote the unrolled version of Y into a vector of dimension NT x 1,

Y11
vee(Y) = y?1
YNT
Then
My : p(vec(Y)) = N (vec(Y)|0,02Krpr(W, W|l) + o2Iy7), (1)

where N (a|b, C) is a Gaussian distribution in vector a with mean b and covari-
ance C; Iy7 is the NT x NT identity matrix; o2 and o2 are scalar parameters
which control the overall variance contributed by each kernel; Krpp(l) is an
NT x NT radial basis function kernel with length-scale parameter [ and elements

defined by Krpr(wij, wep|l) = exp (—W) The length-scale parameter
determines the overall scale on which the trait varies within an individual. For
very rapidly varying traits, it is small, and for slowly varying traits it is large.


jennl
Text Box


Flexible Modelling of Genetic Effects on Function-Valued Traits 99

The RBF kernel models the dependence in time while the identity kernel
models the remaining environmental noise. Note that the RBF kernel here mod-
els not only correlation between time points within an individual but also equally
across individuals. That is, we make the assumption that the trait at time point
t is more correlated across individuals ¢ and j than between time points ¢ and
t + to for the same person (where ¢y is an offset in time). While at first this
may seem a counterintuitive choice, it turns out that for the types of traits we
are interested in, it is the correct thing to do. Namely, we are interested in set-
tings in which the traits are the same across all individuals (or later for those
with the same genetics), other than by virtue of noise. Examples of such traits
are shown in Fig.1. An example where this is might be a reasonable assump-
tion would be growth curves where on average the curves look the same for a
species, but with a particular mutation the curve suddenly changes trajectory.
An example where this is an unreasonable assumption would be un-aligned elec-
trocardiographic signals where no two people would in general look the same at
time ¢t unless their signals had been re-scaled and aligned. When the assumption
of correlation in time between individuals is not believed to be reasonable, one
can easily remove this restriction from the model, leaving time correlations only
within an individual. In fact, as we explain in the next section, it is algebraically
and computationally trivial to make such a change while retaining all efficient
computations. However, by removing this assumption from the model one loses
statistical power if the assumption is actually valid in the data. In fact, when
conducting our synthetic experiments we found that removal of this assumption
in the model substantially weakened the results (data not shown).

Note that for simplicity, we assume that covariates such as age and gender
have been regressed out of the trait ahead of time, although these could easily be
incorporated in to the model, by way of the Gaussian mean (i.e.fixed effects). All
remaining expositions (other than for the pseudo-inputs and variational infer-
ence) can be readily extended to having covariates directly included with no
change to the computational time complexity. We make a similar assumption
about population structure and family relatedness, which can be regressed out
using either principle components [25] or linear mixed models [21], although
investigating the best way to do this for function-valued traits is an open area
for investigation. Finally, in Eq.1 we did not assume that traits for each person
were measured at the same time points or that no trait values were missing.
However, in the next section on efficient computations, we will need to make
this assumption. In Sect. 2.4 we outline ways to relax this assumption.

Efficient Computation of the Likelihood. In order to obtain a p-value by
way of statistical testing we need to estimate the maximum likelihood para-
meters of our model over and over, once per genetic marker. Computing the
maximum likelihood over and over again for each hypothesis is a non-trivial goal
in the sense that general kernel-based methods have time complexity which scales
cubically in the dimension of the kernel (here NT'), and space complexity which
is quadratic in that dimension. However, in some cases, structure in the kernel


jennl
Text Box


100 N. Fusi and J. Listgarten

can be leveraged to gain substantial speed-ups (e.g. [21]). For Partitioned GPs
such structure arises when there is no missing data and all traits are measured
at the same time points for all individuals. In this case, the likelihood can be re-
written with Kronecker products in the covariance term, yielding dramatically
reduced time and space complexities. Later we discuss how to achieve speed-ups
in the face of missing or unevenly-spaced time points using the Partitioned GP,
which can require some approximations, whereas the present exposition requires
no approximation.

The RBF kernel (dimension NT x NT in Eq.1) is a specially structured
kernel because of the repeating times across individuals. This structure means
that we can re-write the Gaussian likelihood in Eq.1 in matrix-variate form as
follows [22],

My :p(Y) =N (Y |0,0!Krpr(W,W|l) @ In + 07In7), (2)

where here we have overloaded Krpr(W, W|l) to now indicate a T' x T' matrix,
and where Jy is the square matrix of all ones of size N. The symbol ® denotes
the Kronecker product which produces a square matrix of dimensions ab x ab
for A® B if A and B are square matrices of dimension a and b respectively. The
computational time complexity of evaluating the likelihood in Eq. 1 is O(N3T3)
because one must compute the inverse and determinant of the covariance matrix
of dimension NT x NT. In contrast, using a spectral-decomposition-based re-
factoring [22] of Eq.2, the computational time complexity can be reduced to
O(T3).! In particular, if one defines U,.S, UT as the spectral decomposition of
the T' x T matrix Kgpr(l), and UijU]T as the spectral decomposition of Jy,
then one can write the log likelihood of the null model as follows [22]:

NT 1 1
- In(27) — gl 1S, ® S| — =vec(UXYU;)T(S, ® S;) 'vec(ULYU;).

2
3)

It is also easy to generalize this expression and its derivative when the mean of
the Gaussian is non-zero; we do so to make one of the models we compare against
(Furlotte et al.) significantly faster than in their original presentation (they could
not do the same because they jointly model population structure) [5].

Note that the individuals are not identically and independently distributed
(itd) in our null model because of the term J . If we were to replace Jy with the
identity matrix, then the individuals would be iid, which thus amounts to relax-
ing the assumption mentioned in the introduction wherein time points across
individuals are correlated.

As described earlier, we have assumed that population structure and family
structure have already been accounted for, but these could instead be incorpo-
rated in to the model by adding to Jy a genetic similarity matrix [21], incurring
a time complexity of O(N?3 + T®) in the most general case.

Loy =

LIf Jy were an arbitrary matrix the time complexity would be O(N3 4+ T®), but
because the spectral decomposition of Jy can be computed once and cached, the
complexity becomes O(T3). Moreover, because it is an all-ones matrix, its spectral
decomposition can be computed more efficiently than in the general case.
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For parameter estimation we use gradient descent to obtain the maximum
likelihood solution in parameters [, 02, 02—all scalars. The reader is referred to
Stegle et al. for the derivative expressions which have the same time complexity
as Eq. 3 [22]. Because the log likelihood is not convex, we use multiple random
re-starts, finding empirically that five restarts in our experiments yielded good
results.

2.2 Alternative Model

Now that we have fully described the null model and how to efficiently compute
its log likelihood, we generalize this model to an alternative model which handles
a wide range of genetic effects. To do so, we create a separate GP for each
partition of the data, where the partition is defined by the alleles of the test
SNP (using whatever encoding of the data one desires, such as a s = 0,1,2
encoding of the number of mutant alleles across the two chromosomes),

S
Ma:p(Y) =Y N (Y|0,02 Kppr(W,W[) @Iy, +02In,1), (4)

s=1

where S denotes the number of alleles in the SNP encoding, Y is the subset
of trait data for which the individual has SNP value s, and where N; is the
number of such individuals. In principle, one could use a different length scale,
[ and variance parameters o2 for each partition s, but we have found that in
our experiments, tying them together yielded good results and allowed us to test
SNPs with much lower MAF owing to the data sharing offered by the shared
parameters. While it may seem at first glance that this parameter tying might
coerce the trait to look the same across SNP partitions, in fact, we are only
coercing broad properties of the trait to be similar, such as the scale on which
the signal changes, and only loosely at that. Because GP regression is a non-
parametric model, the data itself plays a large role in defining the posterior
distribution of functional forms; it is for this reason that our model is able to
capture substantially different functional forms even with tied parameters.

The same efficient computations outlined earlier for the null model can just
as well be applied to this alternative model, and so the time complexity of
computing the alternative model likelihood has as an upper bound that of the
null model, which happens only when all individuals are assigned to the same
partition. Note too that the null model can computed just once and then cached
across all SNPs tested for increased efficiency.

Beyond data sharing across partitions by virtue of shared parameters, the
model has good statistical efficiency owing to the fact that GPs operate in the
kernel space [17] where the number of parameters does not depend on the number
of time points. All in all, we find in our experiments that as few as seven samples
per partition appears to be sufficient, which with cohort sizes in the tens if not
hundreds of thousands, imposes little restriction on the MAF.
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2.3 Hypothesis Testing

Standard frequentist hypothesis testing uses a null model that is nested in the
alternative model which then allows one to use a likelihood ratio or score test,
for example. However, even when models are nested, these tests require that
model assumptions are met, and typically that sample sizes are large enough
for asymptotics to be valid. In cases where model or asymptotic assumptions
are unmet, one can appeal to various forms of permutation testing to obtain
calibrated p-values. Because our models are not nested, we cannot rely on stan-
dard theories to compute p-values, and could therefore turn to permutation
testing. However, as it turns out, when we apply a standard x? test to generate
p-values for our Partitioned GP, we find that our type 1 error is controlled, albeit
extremely conservatively even though the assumptions of this test are not here
met (see Results). Furthermore, in the discussion, we outline a nested version of
the Partitioned GP that we are currently working on.

4 4 4
3 3 3
3 3 3
S S S
E’Z 82 82 5
o o o 2
1 1 1
Y 1 2 3 4 % 1 2 3 4 % 1 2 3 4
T=50 -log10(p) T=100 -log10(p) T=150 -log10(p)

Fig. 2. Paired plot of the —log p-values generated from the null distribution, for 10
time points versus each of 100 and 150 time points.

The precise way in which we apply a standard x? test is that we compute
the maximum likelihood of the data under the null and under the alternative
models, L4 and Ly, count the number of degrees of freedom different between
them, d, and then apply the standard p-value computation. Our null model has
no partitions and has three free scalar parameters: o2 and [, the overall-variance
and length-scale for the time-based kernel, and o2 for the residual noise. Our
alternative model shares all parameters across partitions except for the time-
based kernel variances, o2, (one per SNP allele), leading to two more parameters
than the null model. We count these two parameters as two extra degrees of
freedom even though these parameters are constrained to be greater than zero
and so are not truly full degrees of freedom—such miscounting can only lead
to overly-conservative p-values in the case of properly nested models. Our test
statistic is then twice the difference between the null and alternative maximum
log likelihoods, A = 2(L4 — Ly), from which we compute a p-value using a x?2
test with d = 2 of freedom. While this p-value is uncalibrated, as we shall see in
the Results section, it turns out to control type 1 error.


jennl
Text Box


Flexible Modelling of Genetic Effects on Function-Valued Traits 103

Table 1. Control of type 1 error at significance thresholds « for traits with 10 time
points using 390,272 tests. Fraction of p-values below that threshold, with absolute
numbers in parentheses.

Model a=10"7 a=10"° a=10""* a=107°
Partitioned GP | 1.1 x 1073(434) | 6.7 x 107°(26) | 0.0(0) 0.0(0)
Inverse K score | 9.1 x 1073(3568) | 8.8 x 107%(342) | 5.6 x 107°(22) | 1.0 x 1075(4)
(3828) | 9.4 x 107%(366) | 6.1 x 107°(24) | 1.0 x 107°(4)
Furlotte et al. | 9.2 x 1073(3589) | 9.3 x 107%(362) | 6.1 x 107°(24) | 1.5 x 107°(6)

Inverse linreg | 9.8 x 1073

(
(
(
(

2.4 Handling Traits with Missing Data or Which
are Unevenly-Sampled Across Individual

In a model with a vector Gaussian likelihood, such as Eq. 1, missing trait data can
readily be handled by simply removing any rows with missing data, because this
procedure is equivalent to marginalization in a Gaussian [17]. In such a manner, if
using Eq. 1, one could take T to be the number of uniquely observed time points
across all individuals, even if many individuals were missing many of these time
points. This procedure could also capture the case where different individuals
were measured at different time points. However, in the Kronecker version of
the likelihood written for computational efficiency gains (Eq.2), one can no
longer perform this arbitrary marginalization by simply removing an element of
the phenotype vector, because with the Kronecker-factorized covariance matrix
one would have to either remove all individuals missing a time point, or all
time points missing an individual. Therefore, if one wants both computational
efficiency and a means to readily marginalize over missing data, one must appeal
to alternative formulations and/or approximations. The approach we propose is
keep the Gaussian likelihood in vector form, as in Eq.1, but to augment the
model with latent inducing inputs [23,24], which are points in time (or space,
depending on the type of trait) that are included in the model. Inducing inputs
can be thought of as pseudo-observations in time (or space) that are included
in the RBF kernel inputs; when conditioned on, these pseudo-observations make
any observed data conditionally independent of each other. This has the effect
of reducing the time complexity from O((NT)?) in Eq.1 to O(NTQ?) for Q
inducing inputs. In such a variational approach, only the number of pseudo-
observations need be specified, not the locations, as these are learned as part of
the parameter estimation procedure. Also note that if one uses as many pseudo-
observations as there are uniquely observed time points, then the algorithm is
exact. As a consequence, one could use this approach as an alternative to the
efficient Kronecker product approach we described. We have not yet performed
experiments with this approach, but these methods are well-studied and their
application should be rather direct.
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3 Results

As discussed in the introduction, many models have been developed to per-
form genome-wide association studies with function-valued traits. However, these
models tend to have constraints on the type of genetic or time effect that can be
recovered (e.g., only constant or linear effect in time, or only linear in the SNP),
or are limited to relatively few time points because the number of parameters
scales with the number of time points. For our experiments we have chosen a
set of baseline models to test particular hypotheses about what kinds of models
work and where they fail, in the settings we care about—in particular, explor-
ing what happens when there are a large number of time points such as would
be collected be wearables and other sensors. The models we compare and their
short-hand notation are:

1. Partitioned GP: As described above, using the (exact) Kronecker product
implementation.

2. Furlotte et al.: A linear mixed model where correlation in time is modelled
using an auto-correlation kernel (here we use an RBF as we do with our
Partitioned GP), and where in the alternative model, the SNP is a fixed effect,
shifting the trait at all time points by the same amount [5]. A standard LRT
test is used for the one-degree-of-freedom test. Note that we here do not use
the population structure kernel used in [5] as our experiments are not affected
by such factors.

3. Inverse linreg: To examine how models for which the number of parameters
increases with the number of time points, we use inverse linear regression
model wherein the SNP is modelled as the dependent variable and each trait
in time is an independent variable. Testing is done with a x2 test with T
degrees of freedom (total number of time points, assumed to be the same for
all individuals). Note that in place of inverse linear regression, we could have
used inverse multinomial/“soft-max” regression. However, because prelimi-
nary results suggested the results were similar, we chose to experiment with
only the linear model.

4. Inverse K score: This model can be viewed as a Bayesian equivalent to Inverse
linreg where the time-effects are integrated out, yielding a linear mixed model.
In this way, the model does not dependend on the number of time points. We
then apply a score test to obtain a p-value (e.g. [2]).

We systematically explore each of these approaches on simulated phenotypic
data where we know the ground truth, examining type 1 error control, power,
and ability to rank hypotheses regardless of calibration. We based our simulated
data on the actual SNPs in the CARDIA data set (dbGaP phs000285.v3.p2)
which, after filtering out individuals missing more than 10 % of their SNPs, any
SNPs missing more than 2 % of individuals, or with MAF less than 5 % left 1,441
individuals with 540,038 SNPs. The only covariate we use is an off-set, which we
regress on as a pre-processing step before applying the models.

To simulate time-varying traits, we used a set of canonical functions that
were representative of the types of signal we were interested in exploring. In
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Fig. 3. Power curves as a function of time for all methods. On the vertical axis is the
median —log p-value for each method over eight thousand SNP tests. The top plot is
for tests with SNP effect, and the lower plot is for those with no SNP effect. *As noted
in the main text, the numerical routine used to get p-values for Inverse K score does not
yield numeric values less than around 10~8, thereby likely making this method appear
worse than it might be; however, we get a better sense of its behaviour in Fig. 5.

particular, we used a wave, linear, bias, and a stretch as shown in Fig.1. For
null data, we generated noisy versions of these, where the noise was iid in time
and individual. For non-null data we modified the noise-free trait in a smoothly
varying way as a function of genotype before adding iid noise. For the wave
(a sin wave), the amplitude increased as a linear function of the SNP; for the
linear (a straight line), the slope changed as a linear function of the SNP; for
the bias, the horizontal intercept changed as a linear function of the SNP; for
stretch (a sin wave), the frequency changed as a linear function of the SNP.
We varied both the SNP effect intensities and the amount of noise. One can
summarize the strength of the SNP effect at each time point by the fraction of
variance explained by the genetic signal at each time point (i.e., the variance of
the noiseless trait divided by total variance, all at a given time point) as shown
in Fig. 4. Because we were interested specifically in seeing which models could
handle many time points, we conducted experiments with 10, 50, 100, and 150
time points.

wave stretch linear bias
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Fig. 4. Average fraction of variance accounted for by genetics at each time point in
each canonical function over the range of settings used, for the traits with 100 time
points.
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Fig.5. ROC curves for the simulated data with T equal to 10, 50, 100 and 150 time
points, for small False Positive Rates (less than 0.01). The vertical axis shows the False
Positive Rate, and the horizontal axis, the True Positive Rate.

Our first goal was to establish whether our Partitioned GP controls type 1
error so that we could use its p-values at face value for power comparisons, even
if they are not calibrated. First we used 8,000 tests at each of 10, 50, 100 and
150 time points, finding that the smallest number of time points (10) was always
the least conservative (Fig.2). Therefore, we ran much larger scale simulations
of null-only data for 10 time points, obtaining 390,272 test statistics. With just
under half a million tests, we had resolution to check for control of type 1 error
up to a significance level of & = 1075, As can be seen in Table1, all methods
control the type 1 error up to a = 107°. Note that our method controls the
type 1 error extremely conservatively, which could potentially hurt our method
in a power comparison. However, as we see next, our method is still the most
powerful overall in our experiments.

Having established that our method controls type 1 error, we next set out to
see if it had more power to detect associations than the other methods. Figure 3
shows the median test statistic for both our null (lower plot) and non-null (upper
plot) experiments, and demonstrates that our methods has maximum power for
the traits and methods chosen. Because our type 1 error control experiments
only went to o = 107°, we chose to include the lower plot (Null). This null plot
shows that while the inverse kernel score remains calibrated, the inverse linear
regression becomes substantially inflated, failing to control the type 1 error. Our
method, is extremely conservative in controlling the type 1 error, yet maintains
maximal power. We also break down these plots by trait type in Fig.6. Here
we see that Furlotte et al., despite only modelling a mean shift in the trait, is
able to capture stretch, though not wave, for which the mean between alleles is
identical. For stretch and wave, the Partitioned GP is the clear winner, while
for linear, all method work equally well, and for stretch, Furlotte et al. and the
Partitioned GP have the most power.

Note that the inverse kernel score test appears to have terrible power. How-
ever, this plot is perhaps misleading in the sense that this method uses a numeri-
cal routine (Davies method) which has limited precision, yielding many zeros for
tiny p-values (usually those smaller than 10~%). The only way to handle this was
either to keep these at zero, which would give that method an unfair advantage,
or to replace all zero p-values with 1078, which is what we chose to do, thereby
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Fig. 6. Power curves as in Fig. 3, but separated by trait types shown in Fig. 1. *Again,
as noted in the main text, the numerical routine used to get p-values for Inverse K
score does not yield numeric values less than around 10~%, thereby likely making this
method appear worse than it might be; however, we get a better sense of its behaviour
in Fig. 5.

showing the model in a worse light with respect to power than we believe it
may have if there were a way to compute p-values with more precision. As a
consequence, we next investigated the ability of each model to discriminate true
nulls from alternatives by using a Receiver Operating Characteristics (ROC)
curve—a metric which does not depend in any way on calibration and may be
less sensitive to p-value resolution.

Figure 5 shows the ROCs for each method, where we now see that the inverse
kernel score test performs extremely well, though not as well as the Partitioned
GP. Note that inverse linear regression, though showing inflated test statistics
in the lower panel of Fig.3, here demonstrates that it maintains the ability to
properly rank the hypotheses from most to least significant, though again, not
as well as the Partitioned GP. Note that the performance of Furlotte et al. is
not terribly surprising since it is only able to capture shifts in the mean of the
functional trait, whereas our simulation scheme is deliberately testing richer SNP
effects.

4 Discussion

We have introduced a new method for performing GWAS on function-valued
traits. Our model is extremely flexible in its capacity to handle a wide range of
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functional forms. This flexibility is achieved by using a non-parametric statisti-
cal model based on RBF Gaussian processes. Computations in this model are
efficient when time points are aligned and traits are not missing, scaling only
cubically with the number of time points as opposed to cubic in the number of
time points times individuals, as would be the case in a naive computation. We
have also outlined how to do efficient computations even in the presence of miss-
ing trait data or unaligned samples. In a comparison against three other models
on synthetic data, each with different characteristics and ways of handling the
problem, we achieved maximal power, and maximal ability to discriminate null
versus alternative tests as judged by an ROC curve. Our model is especially
good at handling traits with many time points.

One downside of the model as presented is that the null model is not nested
inside the alternative model, making computation of calibrated p-values with-
out permutations most likely impossible. We were able to bypass this issue by
demonstrating empirically that naive application of a likelihood ratio test con-
trols the type 1 error, yielding extremely conservative p-values. However, we are
currently investigating a version of the Partitioned GP model which has its null
model nested in the alternative model and is therefore likely to yield calibrated
p-values and therefore potentially a larger power gain. In this model, the par-
titions of the alternative model are all placed within a single Gaussian, with
correlation parameters for each pair of alleles dictating how similar the GP for
each allele should be. When these parameters are equal to one, we obtain the
present alternative model. When these parameters are zero, we obtain the null
model, thereby making it nested inside of the alternative. Other directions of
interest are to extend this type of modelling approach to testing sets of SNPs
rather than only single SNPs, and to incorporate model-based warping of the
phenotype so as to coerce the data to better adhere to the Gaussian residual
assumption [26].
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